
222 Soo Yun Hwang et al. © 2010 ETRI Journal, Volume 32, Number 2, April 2010

A conventional pseudorandom sequence generator
creates only 1 bit of data per clock cycle. Therefore, it may
cause a delay in data communications. In this paper, we
propose an efficient implementation method for a
pseudorandom sequence generator with parallel outputs.
By virtue of the simple matrix multiplications, we derive a
well-organized recursive formula and realize a
pseudorandom sequence generator with multiple outputs.
Experimental results show that, although the total area of
the proposed scheme is 3% to 13% larger than that of the
existing scheme, our parallel architecture improves the
throughput by 2, 4, and 6 times compared with the existing
scheme based on a single output. In addition, we apply our
approach to a 2×2 multiple input/multiple output (MIMO)
detector targeting the 3rd Generation Partnership Project
Long Term Evolution (3GPP LTE) system. Therefore, the
throughput of the MIMO detector is significantly
enhanced by parallel processing of data communications.

Keywords: pseudorandom sequence generator, linear
feedback shift register, matrix multiplication, 3GPP LTE
system, MIMO detector.

Manuscript received Sept. 4, 2009; revised Dec. 17, 2009; accepted Jan. 4, 2010.
This work was supported by the IT R&D program of MKE/KEIT, Rep. of Korea [2006-S-

001-04, Development of Adaptive Radio Access and Transmission Technologies for the 4th
Generation Mobile Communications].

Soo Yun Hwang (phone: +82 42 860 5569, email: syhwang@etri.re.kr), Gi Yoon Park
(email: gypark@etri.re.kr), and Dae Ho Kim (email: daeho@etri.re.kr) are with the Internet
Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Kyoung Son Jhang (email: sun@cnu.ac.kr) is with the Department of Computer
Engineering, Chungnam National University, Daejeon, Rep. of Korea.

doi:10.4218/etrij.10.1409.0047

I. Introduction

Pseudorandom sequences [1] have been widely used in various
fields, including communications, navigation, radar technology,
cipher technologies, remote control, measurements, and industrial
automation [2]. For example, pseudorandom sequences have
been used in error-correcting codes [3], spread spectrum
communication [4], [5], and system identification and parameter
measurements [6], [7]. Other example applications are found in
surface characterization and 3D scene modeling [8]. The design
of a general purpose pseudorandom sequence generator has
matured and has already been commercialized [9]-[11].

Pseudorandom sequences are series of 1’s and 0’s that lack any
definite pattern and look statistically independent and uniformly
distributed. The sequences are deterministic, but exhibit noise
properties similar to randomness [12]. In particular, a
pseudorandom sequence generator is usually made up of shift
registers with feedback. By linearly combining elements from
taps of the shift register and feeding them back to the input of the
generator, we can obtain a sequence of much longer repeat length
using the same number of delay elements in the shift register.
Therefore, these blocks are also referred to as a linear feedback
shift register (LFSR) [13], [14]. The length of the shift register, the
number of taps, and their positions in the LFSR are important to
generate pseudorandom sequences with desirable auto-correlation
properties [15]. However, the output of the conventional
pseudorandom sequence generator is limited to 1 bit per clock
cycle. This restriction can be a bottleneck for data
communications and may cause a delay. To deal with this issue,
parallel architectures for a pseudorandom sequence generator

Efficient Implementation of a
Pseudorandom Sequence Generator for

High-Speed Data Communications

 Soo Yun Hwang, Gi Yoon Park, Dae Ho Kim, and Kyoung Son Jhang

ETRI Journal, Volume 32, Number 2, April 2010 Soo Yun Hwang et al. 223

have been proposed [16], [17]. The approaches describe a parallel
architecture implementation of a pseudorandom sequence
generator for a spread-spectrum communication system and its
associated switch minimization algorithm. However, the
approaches are somewhat complicated in implementation and
require additional memory, control blocks, and switches.

Another way to avoid delay in data communications is to
generate the bit sequence in advance in a serial manner and store
it in parallel format in an extra buffer before applying it to the
actual data. However, this method also requires more area
overhead such as memory and memory control blocks. In this
paper, we propose an efficient method of implementing a
pseudorandom sequence generator for high-speed data
communications. Through simple matrix multiplications, we are
able to derive an efficient recursive formula in a parallel form
and to simply implement a pseudorandom sequence generator
with multiple outputs that does not require any control logics or
buffers. In addition, we apply the proposed pseudorandom
sequence generator with parallel outputs to a 2×2 multiple
input/multiple output (MIMO) detector to demonstrate the
efficiency of our approach.

The remainder of this paper is organized as follows. In
section II, we describe the key idea of the pseudorandom
sequence generator with parallel outputs and an example in
which to apply our scheme. We present experimental results in
section III, and concluding remarks are given in section IV.

II. Parallel Pseudorandom Sequence Generator

1. Description of the Proposed Parallel Pseudorandom
Sequence Generator

Figure 1 shows the structure of a conventional
pseudorandom sequence generator based on LFSR with degree
K. In the figure, pseudorandom sequence c(n) is defined using
a linear recurrence equation:

0
() mod (), 2k

k K
c n K a c n k

≤ <

⎛ ⎞
+ = ⋅ +⎜ ⎟

⎝ ⎠
∑ . (1)

The feedback taps are taken from cells corresponding to the
exponents in the polynomial. Consequently, LFSR has taps
from cells indexed by k such that ak is nonzero.

The matrix formula (2) is obtained from the existing
pseudorandom sequence generator with a single output shown
in Fig. 1, since the pseudorandom sequence is based on linear
operations [18], [19].

(1;) (;),n K n K+ = ⋅c A c (2)

where vectored sequence c(m;L) denotes a sequence of
L-dimensional row vector [c(m)…c(m+L-1)]t and K-by-K

Fig. 1. Conventional pseudorandom sequence generator based on
LFSR with degree K.

D D D D D D…

Modulo-2 adder

aK−1 aK−2 a2 a1 a0

c(n+K) c(n+K−1) c(n+K−2) c(n+2) c(n+1)

c(n)

…

matrix

0 1 2 1

0 1 0 0
0 0 1 0

.

Ka a a a −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A (3)

By mathematical induction, an M-shifted sample version of
vectored sequences is calculated as

(;) (;),Mn M K n K+ = ⋅c A c (4)

where M is any non-negative integer, and matrix
multiplications are induced from multiplication and addition of
a Galois field (2).

Actually, the r-th row of matrix AM amounts to a mask for
shifting (M+r−1) samples. Note that for M = 1, all rows except
the last one degenerate into a trivial masking pattern or the
selection of one element.

Figure 2 shows the architecture of the pseudorandom sequence
generator with M-bit outputs, where the r-th row of M-by-K
matrix B corresponds to the mask for shifting (r−1) samples. In
particular, if M is not greater than K, the row vectors degenerate
into selection patterns regardless of A, and the additional delay is
applied by simply adopting other mask patterns.

The parallel architecture has two mask stacks for each
maximal length sequence generator as shown in Fig. 2. The
operations of the switches for the mask stacks are determined by
each element in the matrices AM (K-by-K) and B (M-by-K). If
the elements have a 1, the connection of the switches is achieved;
otherwise, the switches are disconnected. In addition, the stacks
at the feedback path update the states of the shift registers and
depend on processing rates M, while those at the forward path
transform the states into output samples with constant delays.
These mask stacks are generated by the generating polynomials
of the pseudorandom sequence generator.

2. Application Example

We apply our scheme to a gold sequence generator as an

224 Soo Yun Hwang et al. ETRI Journal, Volume 32, Number 2, April 2010

Fig. 2. Proposed architecture for the pseudorandom sequence
generator with M-bit outputs.

Mask stack AM

Shift register array

K

M

…

…

…

… … …

Mask stack B

…

…

…

… … …

K

Row0 …

c(M(n+1);K)

Row1 Rowk−1
c(Mn)

c(Mn+1)

c(Mn+K−1)

c(M(n+1)+K−1) c(M(n+1)+1) c(M(n+1))

C
ol0

C
ol1

� �

c(Mn;K)

Row0 … Row1 RowM−1 C
ol0

C
ol1

c(Mn)

c(Mn+1)

c(Mn+K−1)

c(Mn+M−1) c(Mn+1) c(Mn)

c(Mn;M)

� �

� �

��

…
 Colk−1

C
olk−1

…

application example. A gold sequence generator is a
representative example employing a pseudorandom sequence
generator. Gold sequences are a set of specific sequences found
in systems employing a spread spectrum or code division
multiple access (CDMA) techniques. These systems are often
used in communications equipment, such as cellular phones,
GPS devices, and very small aperture satellite terminals
(VSATS) [20]-[22].

Figure 3 shows the structure of the existing gold sequence
generator with degree N. The gold sequence d(n) belongs to a
family of codes with well-behaved cross-correlation properties
that are constructed using a modulo-2 addition of the specific
relative phases of a preferred pair of pseudorandom sequences,
x0(n) and x1(n) [23].

The gold sequence generator consists of two pseudorandom
sequence generators, and the existing structure has a 1 bit
output d(n) as shown in Fig. 3. This restriction may cause a
delay in data communications. Therefore, we apply our
scheme to an existing gold sequence generator with a 1 bit
output to increase the data throughput.

In this paper, we implement a 6-dimensional gold sequence

Fig. 3. Structure of the existing gold sequence generator with
degree N.

D D D D D D …

a0, N-1 a0,2

D D D D D … D

a0, N-2 a0,1 a0,0

Modulo-2 adder

x0(n+N) x0(n+N-1) x0(n+N-2) x0(n+2) x0(n+1) x0(n)

x1(n+N) x1(n+N-1) x1(n+N-2) x1(n+2) x1(n+1) x1(n)
d(n)

M
od

ul
o-

2
ad

de
r

a1, N-1 a1,2 a1, N-2 a1,1 a1,0

Modulo-2 adder

…

…

Fig. 4. Structure of a 6-dimensional gold sequence generator with
a degree of 25 (M = 6).

Mask stack AM

D[24] D[18]
D[19]
D[20]
D[21]
D[22]
D[23]

D[12]
D[13]
D[14]
D[15]
D[16]
D[17]

D[6]
D[7]
D[8]
D[9]
D[10]
D[11]

D[0]
D[1]
D[2]
D[3]
D[4]
D[5] M

as
k

st
ac

k
B

D[24] D[18]
D[19]
D[20]
D[21]
D[22]
D[23]

D[12]
D[13]
D[14]
D[15]
D[16]
D[17]

D[6]
D[7]
D[8]
D[9]
D[10]
D[11]

D[0]
D[1]
D[2]
D[3]
D[4]
D[5] M

as
k

st
ac

k
B

Mask stack AM

generator with generating polynomials x25+x3+1 and
x25+x3+x2+x+1 [24] as shown in Fig. 4, where the mask stack
AM includes exclusive-OR gates, and each connection line
except for shift register array and the mask stack B is applied as
a trivial case. The output of a 6-dimensional gold sequence
generator with a degree of 25 is 6 bits as shown in the figure.

III. Experiments

1. Implementation

We implement the gold sequence generators with 1, 2, 4, and
6 bit outputs (abbreviated as GSG_1, GSG_2, GSG_4, and
GSG_6, respectively). The implemented gold sequence

ETRI Journal, Volume 32, Number 2, April 2010 Soo Yun Hwang et al. 225

Fig. 5. Synthesis results of gold sequence generators.

28

29

30

31

32

33

34

of
 F

PG
A

 sl
ic

es

Gold sequence generators

of FPGA slices 30 31 32 34
GSG_1 GSG_2 GSG_4 GSG_6

Fig. 6. Block diagrams of gold sequence generators.

GSG_1

srstb

GSG_2

GSG_4 GSG_6

sclk
seed_in

din_valid
dataseed0[24:0]
dataseed1[24:0]

srstb
sclk

seed_in
din_valid

dataseed0[24:0]
dataseed1[24:0]

data_out

data_out0
data_out1
data_out2
data_out3

srstb
sclk

seed_in
din_valid

dataseed0[24:0]
dataseed1[24:0]

srstb
sclk

seed_in
din_valid

dataseed0[24:0]
dataseed1[24:0]

data_out0

data_out1

data_out0
data_out1
data_out2
data_out3
data_out4
data_out5

generators have generating polynomials x25+x3+1 and
x25+x3+x2+x+1 [24]. The gold sequence generators are
designed using a synthesizable RTL Verilog targeting XILINX
FPGA (XC2VP100-6ff1704), and the XILINX design tool
(ISE 8.2i) is used to measure the total area. Figure 5 shows the
synthesis results of the gold sequence generators with various
types of outputs.

The total areas of the gold sequence generators with parallel
outputs (GSG_2, GSG_4, and GSG_6) are 3% to 13% larger
than that of the gold sequence generator with a single output
(GSG_1) since the gold sequence generator based on a parallel
architecture requires additional exclusive-OR gates to handle
the parallel processing. However, we consider this to be non-
critical because the gold sequence generator occupies a very
small fraction of the total FPGA chip area. Actually, the gold
sequence generators take less than 1% of the total area in the
case of XC2VP100.

2. Simulation

A ModelSim II simulator is utilized to measure the
performance of the gold sequence generators with various
types of outputs. Figure 6 shows block diagrams of each gold
sequence generator for performance simulation.

In Fig. 6, GSG_1, GSG_2, GSG_4, and GSG_6 have
1 (data_out), 2 (data_out0 and data_out1), 4 (from data_out0 to
data_out3), and 6 (from data_out0 to data_out5) bit outputs,
respectively, while the input signals of all gold sequence

Table 1. Descriptions of input signals.

Signal name Descriptions

srstb System reset, active low signal

sclk System clock

seed_in Input valid signal for dataseed0 and dataseed1

din_valid Output valid signal for the generated sequences

dataseed0
Initial value of upper pseudorandom sequence
generator

dataseed1
Initial value of bottom pseudorandom sequence
generator

generators are equal. Table 1 gives the descriptions of the input
signals.

The total number of bit sequences generated by each gold
sequence generator is 72, chosen as an example, and the clock
frequency for simulation is 100 MHz. Figure 7 shows the
simulation results.

In Fig. 7, the throughputs of GSG_2, GSG_4, and GSG_6
are improved by 2, 4, and 6 times compared with the existing
gold sequence generator with a single output (GSG_1),
respectively. These throughputs are enhanced by changing the
data transmission type from serial to parallel schemes. In the
figure, GSG_1, GSG_2, GSG_4, and GSG_6 take 72, 36, 18,
and 12 clock cycles to generate 72 sequences, respectively.

3. Evaluation

We apply the gold sequence generators employing the
proposed scheme to a 2×2 MIMO detector based on the 3rd
Generation Partnership Project Long Term Evolution (3GPP
LTE) system [24]-[26] to show the efficiency of our approach.

The MIMO detector is based on the minimum mean

square error-successive interference cancellation (MMSE-SIC)
detection algorithm [27]. In particular, latency is one of the
critical factors that decides the overall system performance in
an SIC receiver [28]. In addition, recent communication
systems usually adopt a high-order modulation scheme, such
as 64-QAM, to increase the spectral efficiency. However, the
descrambling module, which has become a mandatory
building block for interference mitigation, forces system
developers into serializing the demodulated bits, leading to a
possible degradation of system throughput. Therefore, we
employ the proposed scheme to accelerate the descrambling
module of an MIMO detector. Figure 8 shows the overall
structure of the MIMO detector.

The MIMO detector consists of a lattice decoder, symbol
demapper, descrambler, and symbol encoder. The implemented
MIMO detector has four 14-bit lattice points (LPs), eight 14-bit

226 Soo Yun Hwang et al. ETRI Journal, Volume 32, Number 2, April 2010

Fig. 7. Throughput for GSG_1, GSG_2, GSG_4, and GSG_6.

Fig. 8. Overall structure of 2×2 MIMO detector.

Alarmouti
decoder

Beam
decoder

MMSE
operator

SIC
operator

Symbol
mapper Scrambler

Block
interleaver

Rate
matcher

C
ha

nn
el

 d
ec

od
er

Turbo

encoder

Lattice decoder Symbol encoder

Symbol demapper Descrambler

PCICH
LLR

PDCCH
LLR

PDSCH0
LLR

PDSCH1
LLR

LP
CSI

Noisevar

Buffer

C
ha

nn
el

 e
st

im
at

or
 a

nd
 d

em
ul

tip
le

xe
r o

f d
em

od
ul

at
or

 a

b

c

FB_data

QPSK d
[PCICH]
QPSK e
[PDCCH]

QPSK
16-QAM

64-QAM f
[PDSCH0]

QPSK
16-QAM

64-QAM g

GSG_1 & GSG_2

GSG_1 & GSG_2

GSG_1 & GSG_6

GSG_1 & GSG_6

Sign
toggler

h

Sign
toggler

i

Sign
toggler

j

Sign
toggler

k

l

[PDSCH1]

channel-state information (CSI), a 32-bit Noisevar, a 2-bit
FB_data, 8-bit PCICH LLR, 8-bit PDCCH LLR, 8-bit
PDSCH0 LLR, and 8-bit PDSCH1 LLR buses. The LP, CSI,
and Noisevar are the lattice points through the physical
channels, channel gain matrixes of the corresponding lattice
points, and thermal noise variance, respectively, while the
FB_data indicates the feedback data for SIC operations. The
outputs of the MIMO detector are the descrambled bit LLRs of
each channel. The gold sequence generators are used in the
descrambler to toggle the scrambled bit LLRs (output signals
of the symbol demapper) of a binary codeword through

physical channels as shown in Fig. 8.
The control channels (PCICH and PDCCH) are based on

quadrature phase-shift keying (QPSK) or 4-quadrature
amplitude modulation (QAM). The modulation orders of the
data channels (PDSCH0 and PDSCH1) can be QPSK,
16-QAM, or 64-QAM. Thus, the number of scrambled bit
LLRs of the control channels is 2 per symbol, and that of the
data channels is 2, 4, or 6 per symbol according to the
modulation order. We apply GSG_2, GSG_4, and GSG_6 to
the corresponding modulation orders, respectively. Next, we
compare the proposed scheme with the existing method based

ETRI Journal, Volume 32, Number 2, April 2010 Soo Yun Hwang et al. 227

Table 2. Simulation configurations for each channel type.

Case Channel type Data path NData # of transactions
1 PCICH a→d→h 288 2,400

2 PDCCH a→e→i 4,800 2,400

3 PDSCH0 b→f→j 33,120 2,400

4 PDSCH1 l→c→g→k 33,120 2,400

Fig. 9. Comparison of throughput results.

0
10

20
30
40
50
60

70

Th
ro

ug
hp

ut
 (G

bi
t/s

)

Existing scheme 5.19 13.74 10.39 6.37
Proposed scheme 9.81 27.25 62.01 13.02

Case 1 Case 2 Case 3 Case 4

on the gold sequence generator with a single output (GSG_1)
in throughput. When using GSG_1, additional buffers and
control logics are required to generate a scrambled bit LLR in
advance in a serial manner and store it in a parallel format
within an extra buffer before applying it to the actual data. Gold
sequence generators with parallel outputs such as GSG_2,
GSG_4, or GSG_6, however, do not need any area overhead
such as extra buffers or control logics.

In Fig. 8, the data paths of the control channels are fixed,
while the data paths of the data channels are diverse according
to the operation mode, such as SFBC, beamforming, single-
user MIMO or multi-user MIMO, and the modulation order,
such as QPSK, 16-QAM, or 64-QAM. Therefore, we use the
64-QAM-based single-user MIMO mode with the longest
latency among operation modes for performance comparisons
of the data channels. Table 2 summarizes the simulation
configurations of each channel type for the experiments. In the
Table 2, NData is the unit of data transactions.

Figure 9 shows a comparison of the results. In this study,
throughput is defined as

Throughput = Ntransactions * NNData * Nbit / T,

where Ntransactions is the number of transactions, NNData denotes
the NData, Nbit denotes the data bit width, and T denotes the
completion time of a data transmission.

In cases 1 and 2, our method improves the throughput by
about 2 times compared with the existing method. Also, the
proposed scheme enhances the throughput by about 6 times

compared with the existing scheme in case 3. The throughputs
of cases 1, 2, and 3 are almost the same as those in section III.2
since the latencies of a lattice decoder and symbol demapper
are considerably shorter than that of a descrambler. However,
in case 4, our approach improves the throughput by only 2
times compared with the existing method even though the
modulation order is 64-QAM because a symbol encoder for
SIC operations has a long latency. Therefore, there is some
degradation of the performance improvements.

As a result, we conclude that the throughput of the MIMO
detector is remarkably improved through parallel processing of
data communications.

IV. Conclusion

In this paper, we presented a method to improve the structure
of a pseudorandom sequence generator for high-speed data
communications. With the simple matrix manipulations, we
can obtain efficient recursive formulas in parallel form as well
as implement parallel-structure-based pseudorandom sequence
generators that do not require any control logics or memories.
Experimental results show that although the total area of the
proposed scheme is 3% to 13% larger than that of the existing
scheme, our method improves the throughput by 2, 4, and 6
times compared with the existing method based on a single
output.

We also applied our scheme to a 2×2 MIMO detector based
on the 3GPP LTE system. The performance simulation results
demonstrate that the throughput of the MIMO detector is
significantly improved by parallel processing of the data
communications. We expect that it would be very useful to
apply our scheme to data communication systems that require
high throughput with low latency.

References

[1] Z.G. Xiao, Pseudo-Random Sequence and Its Applications,
Beijing, China: Nat. Defence Ind., 1985.

[2] L. Xu and X. Li, “Dual-Channel Pseudorandom Sequence
Generator with Precise Time Delay Between Its Two Channels,”
IEEE Trans. Instrum. Meas., vol. 57, no. 12, Dec. 2008, pp. 2880-
2884.

[3] C.H. Yen and B.F. Wu, “An Error-Correcting Stream Cipher
Design with State-Hopping Architecture,” J. Chin. Inst. Eng.,
vol. 28, no. 1, 2005, pp. 9-16.

[4] X.G. Wang et al., “Spread-Spectrum Communication Using
Binary Spatiotemporal Chaotic Codes,” Phys. Lett. A, vol. 334,
no. 1, Jan. 2005, pp. 30-36.

[5] H.J. Kim et al., “PN Sequence Generation from 2-D Array of
Shift Registers,” ETRI J., vol. 27, no. 3, June 2005, pp. 273-279.

228 Soo Yun Hwang et al. ETRI Journal, Volume 32, Number 2, April 2010

[6] T. Johnsen et al., “Simultaneous Use of Multiple Pseudo Random
Noise Codes in Multistatic CW Radar,” Proc. IEEE Nat. Radar
Conf., 2004, pp. 266-270.

[7] D.K. Rollins et al., “A Quantitative Measure to Evaluate
Competing Designs for Non-linear Dynamic Process
Identification,” Can. J. Chem. Eng., vol. 84, no. 4, 2006, pp. 459-
468.

[8] H.J.W. Spoelder et al., “Some Aspects of Pseudo Random Binary
Array-Based Surface Characterization,” IEEE Trans. Instrum.
Meas., vol. 49, no. 6, Dec. 2000, pp. 1331-1336.

[9] R. Shaltiel and C. Umans, “Simple Extractors for All Min-
entropies and a New Pseudorandom Generator,” Proc. Annu.
Symp. Found. Comput. Sci., 2001, pp. 648-657.

[10] A.H. Tan and K.R. Godfrey, “The Generation of Binary and
Near-Binary Pseudorandom Signals: An Overview,” Proc. IEEE
Instrum. Meas. Technol. Conf., vol. 2, 2001, pp. 766-771.

[11] J. Szczepanski et al., “Biometric Random Number Generators,”
Comput. Secur., vol. 23, no. 1, Feb. 2004, pp. 77-84.

[12] P. Alfke, “Efficient Shift Registers, LFSR Counters, and Long
Pseudo-Random Sequence Generators,” Application Note, Xilinx
Corp., Aug. 1995.

[13] Gold Code Generator Reference Design, Altera Application Note
295, Mar. 2003.

[14] F. Principe et al., “Rapid Acquisition of Gold Codes and Related
Sequences Using Iterative Message Passing on Redundant
Graphical Models,” Proc. Int. Conf. Military Commun., 2006, pp.
1-7.

[15] X.D. Lin and K.H. Chang, “Optimal PN Sequence Design for
Quasisynchronous CDMA Communication Systems,” IEEE
Trans. Comm., vol. 45, no. 2, Feb. 1997, pp. 221-226.

[16] M. Lowy and K. Anne, “A High-Speed, Low-Power Spread
Spectrum Code Generator,” Proc. Int. Symp. MWSCAS, vol. 1,
1994, pp. 23-26.

[17] M. Lowy, “Low Power Spread Spectrum Code Generator Based
on Parallel Shift Register Implementation,” Proc. Int. Symp. Low
Power Electron., 1994, pp. 22-23.

[18] R. Gold, “Optimal Binary Sequences for Spread Spectrum
Multiplexing,” IEEE Trans. Inf. Theory, 1967, pp. 619-621.

[19] R. Gold, “Maximal Recursive Sequences with 3-Valued
Recursive Cross-Correlation Functions,” IEEE Trans. Inf. Theory,
1968, pp. 154-156.

[20] C.L. Lu et al., “10-Gb/s CMOS Ultra High-Speed Gold-Code
Generator Using Differential-Switches Feedback,” Proc. Int.
Conf. Microwave Integrated Circuit, 2007, pp. 239-242.

[21] A.N. Akansu and R. Poluri, “Walsh-Like Nonlinear Phase
Orthogonal Codes for Direct Sequence CDMA
Communications,” IEEE Trans. Signal Processing, vol. 55, 2007,
pp. 3800-3806.

[22] D. Shiung and J.F. Chang, “Enhancing the Capacity of DS-
CDMA System Using Hybrid Spreading Sequences,” IEEE

Trans. Comm., vol. 52, 2004, pp. 372-375.
[23] P. Markovic and M. Markovic, “FPGA/VLSI Implementation

Analysis of PN Sequence Generator for Direct Sequence Spread
Spectrum Systems,” Proc. Int. Conf. TELSIKS, 1999, pp. 574-
576.

[24] 3GPP TS 36.211, Physical Channels and Modulation (Release 8),
2007.

[25] 3GPP TS 36.201, LTE Physical Layer-General Description
(Release 8), 2007.

[26] 3GPP TS 36.212, Multiplexing and Channel Coding (Release 8),
2007.

[27] K.C. Lee et al., “Optimal Lattice-Reduction Aided Successive
Interference Cancellation for MIMO Systems,” IEEE Trans.
Wireless Commun., vol. 6, no. 7, 2007, pp. 2438-2443.

[28] C.H. Tsai et al., “Hybrid MMSE and SIC for Multiuser
Detection,” Proc. IEEE Int. Conf. Vehicular Technol., vol. 3,
2001, pp. 1779-1783.

Soo Yun Hwang received the BS degree in
computer engineering from Hannam University,
Daejeon, Korea, in 2002, and the MS and PhD
degrees in computer engineering from
Chungnam National University, Daejeon,
Korea, in 2004 and 2008, respectively. Since
2006, he has been working at ETRI, Daejeon,

Korea, where he currently works in a high-speed modem research
team as a senior member of engineering staff. He has participated in
various projects, including the development of a flexible on-chip-
network-based system-on-a-chip platform targeting the H.264 decoder,
a user equipment modem apparatus based on the 3rd Generation
Partnership Project Long Term Evolution, and adaptive radio access
and transmission technologies for the 4th generation mobile
communications. His current research interests include CAD for VLSI,
system-on-a-chip design methodology, on-chip communication
architecture, and high-speed modem designs.

Gi Yoon Park received the BS and MS degrees
in electronics and electrical engineering from
POSTECH, Pohang, Korea, in 2000 and 2003,
respectively. Since 2003, he has been employed
at ETRI, Daejeon, Korea, where he is a member
of engineering staff. His research interests are in
the areas of space-time codes and signal

processing for digital communication.

ETRI Journal, Volume 32, Number 2, April 2010 Soo Yun Hwang et al. 229

Dae Ho Kim received the BS and MS degrees
in electronics engineering from Kyongpook
National University, Daegu, Korea, in 1989 and
1991, respectively, and the PhD degree in
electronics engineering from Chungnam
National University, Daejeon, Korea, in 2005.
He is currently a team leader of the High-Speed

Modem Research Team with ETRI, Daejeon, Korea. His research
interests include broadband wireless communications, DSP and VLSI
applications, and multimedia signal processing.

Kyoung Son Jhang graduated from Seoul
National University in 1986 with a Bachelor of
Computer Engineering degree and received his
MS and PhD degrees at the same university in
1988 and 1995, respectively. Upon graduation,
he joined Hannam University, Daejeon, Korea,
as a faculty member in 1996. He then moved to

Chungnam National University where he still works as a professor
teaching systems programming and digital hardware design. Currently,
his major interests include fault-tolerant hardware design, electronic
design automation, and digital system design.

