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A conventional pseudorandom sequence generator 
creates only 1 bit of data per clock cycle. Therefore, it may 
cause a delay in data communications. In this paper, we 
propose an efficient implementation method for a 
pseudorandom sequence generator with parallel outputs. 
By virtue of the simple matrix multiplications, we derive a 
well-organized recursive formula and realize a 
pseudorandom sequence generator with multiple outputs. 
Experimental results show that, although the total area of 
the proposed scheme is 3% to 13% larger than that of the 
existing scheme, our parallel architecture improves the 
throughput by 2, 4, and 6 times compared with the existing 
scheme based on a single output. In addition, we apply our 
approach to a 2×2 multiple input/multiple output (MIMO) 
detector targeting the 3rd Generation Partnership Project 
Long Term Evolution (3GPP LTE) system. Therefore, the 
throughput of the MIMO detector is significantly 
enhanced by parallel processing of data communications. 
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I. Introduction 

Pseudorandom sequences [1] have been widely used in various 
fields, including communications, navigation, radar technology, 
cipher technologies, remote control, measurements, and industrial 
automation [2]. For example, pseudorandom sequences have 
been used in error-correcting codes [3], spread spectrum 
communication [4], [5], and system identification and parameter 
measurements [6], [7]. Other example applications are found in 
surface characterization and 3D scene modeling [8]. The design 
of a general purpose pseudorandom sequence generator has 
matured and has already been commercialized [9]-[11]. 

Pseudorandom sequences are series of 1’s and 0’s that lack any 
definite pattern and look statistically independent and uniformly 
distributed. The sequences are deterministic, but exhibit noise 
properties similar to randomness [12]. In particular, a 
pseudorandom sequence generator is usually made up of shift 
registers with feedback. By linearly combining elements from 
taps of the shift register and feeding them back to the input of the 
generator, we can obtain a sequence of much longer repeat length 
using the same number of delay elements in the shift register. 
Therefore, these blocks are also referred to as a linear feedback 
shift register (LFSR) [13], [14]. The length of the shift register, the 
number of taps, and their positions in the LFSR are important to 
generate pseudorandom sequences with desirable auto-correlation 
properties [15]. However, the output of the conventional 
pseudorandom sequence generator is limited to 1 bit per clock 
cycle. This restriction can be a bottleneck for data 
communications and may cause a delay. To deal with this issue, 
parallel architectures for a pseudorandom sequence generator 
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have been proposed [16], [17]. The approaches describe a parallel 
architecture implementation of a pseudorandom sequence 
generator for a spread-spectrum communication system and its 
associated switch minimization algorithm. However, the 
approaches are somewhat complicated in implementation and 
require additional memory, control blocks, and switches. 

Another way to avoid delay in data communications is to 
generate the bit sequence in advance in a serial manner and store 
it in parallel format in an extra buffer before applying it to the 
actual data. However, this method also requires more area 
overhead such as memory and memory control blocks. In this 
paper, we propose an efficient method of implementing a 
pseudorandom sequence generator for high-speed data 
communications. Through simple matrix multiplications, we are 
able to derive an efficient recursive formula in a parallel form 
and to simply implement a pseudorandom sequence generator 
with multiple outputs that does not require any control logics or 
buffers. In addition, we apply the proposed pseudorandom 
sequence generator with parallel outputs to a 2×2 multiple 
input/multiple output (MIMO) detector to demonstrate the 
efficiency of our approach. 

The remainder of this paper is organized as follows. In 
section II, we describe the key idea of the pseudorandom 
sequence generator with parallel outputs and an example in 
which to apply our scheme. We present experimental results in 
section III, and concluding remarks are given in section IV. 

II. Parallel Pseudorandom Sequence Generator 

1. Description of the Proposed Parallel Pseudorandom 
Sequence Generator 

Figure 1 shows the structure of a conventional 
pseudorandom sequence generator based on LFSR with degree 
K. In the figure, pseudorandom sequence c(n) is defined using 
a linear recurrence equation: 
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The feedback taps are taken from cells corresponding to the 
exponents in the polynomial. Consequently, LFSR has taps 
from cells indexed by k such that ak is nonzero. 

The matrix formula (2) is obtained from the existing 
pseudorandom sequence generator with a single output shown 
in Fig. 1, since the pseudorandom sequence is based on linear 
operations [18], [19]. 

( 1; ) ( ; ),n K n K+ = ⋅c A c              (2) 

where vectored sequence c(m;L) denotes a sequence of     
L-dimensional row vector [c(m)…c(m+L-1)]t and K-by-K  

 

Fig. 1. Conventional pseudorandom sequence generator based on 
LFSR with degree K. 
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By mathematical induction, an M-shifted sample version of 
vectored sequences is calculated as 

( ; ) ( ; ),Mn M K n K+ = ⋅c A c           (4) 

where M is any non-negative integer, and matrix 
multiplications are induced from multiplication and addition of 
a Galois field (2). 

Actually, the r-th row of matrix AM amounts to a mask for 
shifting (M+r−1) samples. Note that for M = 1, all rows except 
the last one degenerate into a trivial masking pattern or the 
selection of one element. 

Figure 2 shows the architecture of the pseudorandom sequence 
generator with M-bit outputs, where the r-th row of M-by-K 
matrix B corresponds to the mask for shifting (r−1) samples. In 
particular, if M is not greater than K, the row vectors degenerate 
into selection patterns regardless of A, and the additional delay is 
applied by simply adopting other mask patterns. 

The parallel architecture has two mask stacks for each 
maximal length sequence generator as shown in Fig. 2. The 
operations of the switches for the mask stacks are determined by 
each element in the matrices AM (K-by-K) and B (M-by-K). If 
the elements have a 1, the connection of the switches is achieved; 
otherwise, the switches are disconnected. In addition, the stacks 
at the feedback path update the states of the shift registers and 
depend on processing rates M, while those at the forward path 
transform the states into output samples with constant delays. 
These mask stacks are generated by the generating polynomials 
of the pseudorandom sequence generator. 

2. Application Example 

We apply our scheme to a gold sequence generator as an 
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Fig. 2. Proposed architecture for the pseudorandom sequence
generator with M-bit outputs. 
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application example. A gold sequence generator is a 
representative example employing a pseudorandom sequence 
generator. Gold sequences are a set of specific sequences found 
in systems employing a spread spectrum or code division 
multiple access (CDMA) techniques. These systems are often 
used in communications equipment, such as cellular phones, 
GPS devices, and very small aperture satellite terminals 
(VSATS) [20]-[22]. 

Figure 3 shows the structure of the existing gold sequence 
generator with degree N. The gold sequence d(n) belongs to a 
family of codes with well-behaved cross-correlation properties 
that are constructed using a modulo-2 addition of the specific 
relative phases of a preferred pair of pseudorandom sequences, 
x0(n) and x1(n) [23]. 

The gold sequence generator consists of two pseudorandom 
sequence generators, and the existing structure has a 1 bit 
output d(n) as shown in Fig. 3. This restriction may cause a 
delay in data communications. Therefore, we apply our 
scheme to an existing gold sequence generator with a 1 bit 
output to increase the data throughput. 

In this paper, we implement a 6-dimensional gold sequence 

 

Fig. 3. Structure of the existing gold sequence generator with 
degree N. 
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Fig. 4. Structure of a 6-dimensional gold sequence generator with 
a degree of 25 (M = 6). 
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generator with generating polynomials x25+x3+1 and 
x25+x3+x2+x+1 [24] as shown in Fig. 4, where the mask stack 
AM includes exclusive-OR gates, and each connection line 
except for shift register array and the mask stack B is applied as 
a trivial case. The output of a 6-dimensional gold sequence 
generator with a degree of 25 is 6 bits as shown in the figure. 

III. Experiments 

1. Implementation 

We implement the gold sequence generators with 1, 2, 4, and 
6 bit outputs (abbreviated as GSG_1, GSG_2, GSG_4, and 
GSG_6, respectively). The implemented gold sequence  
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Fig. 5. Synthesis results of gold sequence generators. 
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Fig. 6. Block diagrams of gold sequence generators. 
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generators have generating polynomials x25+x3+1 and 
x25+x3+x2+x+1 [24]. The gold sequence generators are 
designed using a synthesizable RTL Verilog targeting XILINX 
FPGA (XC2VP100-6ff1704), and the XILINX design tool 
(ISE 8.2i) is used to measure the total area. Figure 5 shows the 
synthesis results of the gold sequence generators with various 
types of outputs. 

The total areas of the gold sequence generators with parallel 
outputs (GSG_2, GSG_4, and GSG_6) are 3% to 13% larger 
than that of the gold sequence generator with a single output 
(GSG_1) since the gold sequence generator based on a parallel 
architecture requires additional exclusive-OR gates to handle 
the parallel processing. However, we consider this to be non-
critical because the gold sequence generator occupies a very 
small fraction of the total FPGA chip area. Actually, the gold 
sequence generators take less than 1% of the total area in the 
case of XC2VP100. 

2. Simulation 

A ModelSim II simulator is utilized to measure the 
performance of the gold sequence generators with various 
types of outputs. Figure 6 shows block diagrams of each gold 
sequence generator for performance simulation. 

In Fig. 6, GSG_1, GSG_2, GSG_4, and GSG_6 have     
1 (data_out), 2 (data_out0 and data_out1), 4 (from data_out0 to 
data_out3), and 6 (from data_out0 to data_out5) bit outputs, 
respectively, while the input signals of all gold sequence  

Table 1. Descriptions of input signals. 

Signal name Descriptions 

srstb System reset, active low signal 

sclk System clock 

seed_in Input valid signal for dataseed0 and dataseed1 

din_valid Output valid signal for the generated sequences 

dataseed0 
Initial value of upper pseudorandom sequence 
generator 

dataseed1 
Initial value of bottom pseudorandom sequence 
generator 

 

generators are equal. Table 1 gives the descriptions of the input 
signals. 

The total number of bit sequences generated by each gold 
sequence generator is 72, chosen as an example, and the clock 
frequency for simulation is 100 MHz. Figure 7 shows the 
simulation results. 

In Fig. 7, the throughputs of GSG_2, GSG_4, and GSG_6 
are improved by 2, 4, and 6 times compared with the existing 
gold sequence generator with a single output (GSG_1), 
respectively. These throughputs are enhanced by changing the 
data transmission type from serial to parallel schemes. In the 
figure, GSG_1, GSG_2, GSG_4, and GSG_6 take 72, 36, 18, 
and 12 clock cycles to generate 72 sequences, respectively. 

3. Evaluation 

We apply the gold sequence generators employing the 
proposed scheme to a 2×2 MIMO detector based on the 3rd 
Generation Partnership Project Long Term Evolution (3GPP 
LTE) system [24]-[26] to show the efficiency of our approach. 

The MIMO detector is based on the minimum mean   

square error-successive interference cancellation (MMSE-SIC) 
detection algorithm [27]. In particular, latency is one of the 
critical factors that decides the overall system performance in 
an SIC receiver [28]. In addition, recent communication 
systems usually adopt a high-order modulation scheme, such 
as 64-QAM, to increase the spectral efficiency. However, the 
descrambling module, which has become a mandatory 
building block for interference mitigation, forces system 
developers into serializing the demodulated bits, leading to a 
possible degradation of system throughput. Therefore, we 
employ the proposed scheme to accelerate the descrambling 
module of an MIMO detector. Figure 8 shows the overall 
structure of the MIMO detector. 

The MIMO detector consists of a lattice decoder, symbol 
demapper, descrambler, and symbol encoder. The implemented 
MIMO detector has four 14-bit lattice points (LPs), eight 14-bit  
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Fig. 7. Throughput for GSG_1, GSG_2, GSG_4, and GSG_6. 

 
 

Fig. 8. Overall structure of 2×2 MIMO detector. 
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channel-state information (CSI), a 32-bit Noisevar, a 2-bit 
FB_data, 8-bit PCICH LLR, 8-bit PDCCH LLR, 8-bit 
PDSCH0 LLR, and 8-bit PDSCH1 LLR buses. The LP, CSI, 
and Noisevar are the lattice points through the physical 
channels, channel gain matrixes of the corresponding lattice 
points, and thermal noise variance, respectively, while the 
FB_data indicates the feedback data for SIC operations. The 
outputs of the MIMO detector are the descrambled bit LLRs of 
each channel. The gold sequence generators are used in the 
descrambler to toggle the scrambled bit LLRs (output signals 
of the symbol demapper) of a binary codeword through 

physical channels as shown in Fig. 8. 
The control channels (PCICH and PDCCH) are based on 

quadrature phase-shift keying (QPSK) or 4-quadrature 
amplitude modulation (QAM). The modulation orders of the 
data channels (PDSCH0 and PDSCH1) can be QPSK,     
16-QAM, or 64-QAM. Thus, the number of scrambled bit 
LLRs of the control channels is 2 per symbol, and that of the 
data channels is 2, 4, or 6 per symbol according to the 
modulation order. We apply GSG_2, GSG_4, and GSG_6 to 
the corresponding modulation orders, respectively. Next, we 
compare the proposed scheme with the existing method based  
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Table 2. Simulation configurations for each channel type. 

Case Channel type Data path NData # of transactions
1 PCICH a→d→h 288 2,400 

2 PDCCH a→e→i 4,800 2,400 

3 PDSCH0 b→f→j 33,120 2,400 

4 PDSCH1 l→c→g→k 33,120 2,400 

 

 

Fig. 9. Comparison of throughput results. 
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on the gold sequence generator with a single output (GSG_1) 
in throughput. When using GSG_1, additional buffers and 
control logics are required to generate a scrambled bit LLR in 
advance in a serial manner and store it in a parallel format 
within an extra buffer before applying it to the actual data. Gold 
sequence generators with parallel outputs such as GSG_2, 
GSG_4, or GSG_6, however, do not need any area overhead 
such as extra buffers or control logics. 

In Fig. 8, the data paths of the control channels are fixed, 
while the data paths of the data channels are diverse according 
to the operation mode, such as SFBC, beamforming, single-
user MIMO or multi-user MIMO, and the modulation order, 
such as QPSK, 16-QAM, or 64-QAM. Therefore, we use the 
64-QAM-based single-user MIMO mode with the longest 
latency among operation modes for performance comparisons 
of the data channels. Table 2 summarizes the simulation 
configurations of each channel type for the experiments. In the 
Table 2, NData is the unit of data transactions. 

Figure 9 shows a comparison of the results. In this study, 
throughput is defined as 

Throughput = Ntransactions * NNData * Nbit / T, 

where Ntransactions is the number of transactions, NNData denotes 
the NData, Nbit denotes the data bit width, and T denotes the 
completion time of a data transmission. 

In cases 1 and 2, our method improves the throughput by 
about 2 times compared with the existing method. Also, the 
proposed scheme enhances the throughput by about 6 times 

compared with the existing scheme in case 3. The throughputs 
of cases 1, 2, and 3 are almost the same as those in section III.2 
since the latencies of a lattice decoder and symbol demapper 
are considerably shorter than that of a descrambler. However, 
in case 4, our approach improves the throughput by only 2 
times compared with the existing method even though the 
modulation order is 64-QAM because a symbol encoder for 
SIC operations has a long latency. Therefore, there is some 
degradation of the performance improvements. 

As a result, we conclude that the throughput of the MIMO 
detector is remarkably improved through parallel processing of 
data communications. 

IV. Conclusion 

In this paper, we presented a method to improve the structure 
of a pseudorandom sequence generator for high-speed data 
communications. With the simple matrix manipulations, we 
can obtain efficient recursive formulas in parallel form as well 
as implement parallel-structure-based pseudorandom sequence 
generators that do not require any control logics or memories. 
Experimental results show that although the total area of the 
proposed scheme is 3% to 13% larger than that of the existing 
scheme, our method improves the throughput by 2, 4, and 6 
times compared with the existing method based on a single 
output. 

We also applied our scheme to a 2×2 MIMO detector based 
on the 3GPP LTE system. The performance simulation results 
demonstrate that the throughput of the MIMO detector is 
significantly improved by parallel processing of the data 
communications. We expect that it would be very useful to 
apply our scheme to data communication systems that require 
high throughput with low latency. 
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