• 제목/요약/키워드: Multiple imputation

검색결과 61건 처리시간 0.023초

패널자료의 무응답 대체법 (Non-Response Imputation for Panel Data)

  • 박기덕;신기일
    • Communications for Statistical Applications and Methods
    • /
    • 제17권6호
    • /
    • pp.899-907
    • /
    • 2010
  • 무응답 대체(non-response imputation) 방법에 관한 많은 이론과 방법이 제안되었으며 실제 자료 분석에 이용되고 있다. 흔히 횡단면 무응답 대체를 위하여 다중대체법(multiple imputation)이 사용되고 있으며 2차년도 이상의 패널자료에는 종시점회귀대체법(cross-wave regression imputation)이 사용되고 있다. 본 연구에서는 패널자료 분석을 위하여 종시점회귀대체법의 일반형태인 시계열 대체법과 횡단면 무응답 대체법을 결합한 시계열-횡단면 다중 대체법을 제안하였다. 노동부의 매월노동통계 자료를 이용하여 제안한 방법과 기존의 종시점회귀대체법을 비교하여 우수함을 보였다.

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.

Large tests of independence in incomplete two-way contingency tables using fractional imputation

  • Kang, Shin-Soo;Larsen, Michael D.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.971-984
    • /
    • 2015
  • Imputation procedures fill-in missing values, thereby enabling complete data analyses. Fully efficient fractional imputation (FEFI) and multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Methods have been described for hypothesis testing with multiple imputation. Fractional imputation assigns weights to the observed data to compensate for missing values. The focus of this article is the development of tests of independence using FEFI for partially classified two-way contingency tables. Wald and deviance tests of independence under FEFI are proposed. Simulations are used to compare type I error rates and Power. The partially observed marginal information is useful for estimating the joint distribution of cell probabilities, but it is not useful for testing association. FEFI compares favorably to other methods in simulations.

Investigation of multiple imputation variance estimation

  • 김재광
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.183-188
    • /
    • 2002
  • Multiple imputation, proposed by Rubin, is a procedure for handling missing data. One of the attractive parts of multiple imputation is the simplicity of the variance estimation formula. Because of the simplicity, it has been often abused and misused beyond its original prescription. This paper provides the bias of the multiple imputation variance estimator for a linear point estimator and discusses when the bias can be safely neglected.

  • PDF

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

Application of Multiple Imputation Method in Analyzing Data with Missing Continuous Covariates

  • Ghasemizadeh Tamar, S.;Ganjali, M.
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.659-664
    • /
    • 2008
  • Missing continuous covariates are pervasive in the use of generalized linear models for medical data. Multiple imputation is the most common and easy-to-do method of dealing with missing covariate data. However, there are always serious warnings in using this method. There should be concern to make imputed values more proper. In this paper, proper imputation from posterior predictive distribution is developed for implementing with arbitrary priors. We use empirical distribution of the posterior for approximating the posterior predictive distribution, to sample from it. This method is preferable in comparison with a presented imputation method of us which uses a full model to impute missing values using available software. The proposed methods are implemented on glucocorticoid data.

Fully Efficient Fractional Imputation for Incomplete Contingency Tables

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.993-1002
    • /
    • 2004
  • Imputation procedures such as fully efficient fractional imputation(FEFI) or multiple imputation(MI) can be used to construct complete contingency tables from samples with partially classified responses. Variances of FEFI estimators of population proportions are derived. Simulation results, when data are missing completely at random, reveal that FEFI provides more efficient estimates of population than either multiple imputation(MI) based on data augmentation or complete case analysis, but neither FEFI nor MI provides an improvement over complete-case(CC) analysis with respect to accuracy of estimation of some parameters for association between two variables like $\theta_{i+}\theta_{+i}-\theta_{ij}$ and log odds-ratio.

  • PDF

Application of SOLAS to the Multiple Imputation for Missing Data

  • Moon, Sung-Ho;Kim, Hyun-Jeong;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.579-590
    • /
    • 2003
  • When we analyze incomplete data, i.e., data with missing values, we need treatment for the missing values. A common way to deal with this problem is to delete the cases with missing values. Various other methods have been developed. Among them are EM algorithm and regression algorithm which can estimate missing values and impute the missing elements with the estimated values. In this paper, we introduce multiple imputation software SOLAS which generates multiple data sets and imputes with them.

  • PDF

Improvement of Collaborative Filtering Algorithm Using Imputation Methods

  • Jeong, Hyeong-Chul;Kwak, Min-Jung;Noh, Hyun-Ju
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.441-450
    • /
    • 2003
  • Collaborative filtering is one of the most widely used methodologies for recommendation system. Collaborative filtering is based on a data matrix of each customer's preferences and frequently, there exits missing data problem. We introduced two imputation approach (multiple imputation via Markov Chain Monte Carlo method and multiple imputation via bootstrap method) to improve the prediction performance of collaborative filtering and evaluated the performance using EachMovie data.

  • PDF

Comparison of EM with Jackknife Standard Errors and Multiple Imputation Standard Errors

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1079-1086
    • /
    • 2005
  • Most discussions of single imputation methods and the EM algorithm concern point estimation of population quantities with missing values. A second concern is how to get standard errors of the point estimates obtained from the filled-in data by single imputation methods and EM algorithm. Now we focus on how to estimate standard errors with incorporating the additional uncertainty due to nonresponse. There are some approaches to account for the additional uncertainty. The general two possible approaches are considered. One is the jackknife method of resampling methods. The other is multiple imputation(MI). These two approaches are reviewed and compared through simulation studies.

  • PDF