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Abstract

Imputation procedures such as fully  efficient fractional imputation(FEFI) 
or multiple imputation(MI) can be used to construct complete contingency 
tables from samples with partially classified responses.  Variances of 
FEFI estimators of population proportions are derived. Simulation results, 
when data are missing completely at random, reveal that FEFI provides 
more efficient  estimates of population than either multiple imputation(MI) 
based on data augmentation or complete case analysis, but neither FEFI 
nor MI provides an improvement over complete-case(CC) analysis with 
respect to accuracy of estimation of some parameters for association 

between two variables like θ i+ θ + j- θ ij  and log odds-ratio.
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1. Introduction

In the analysis of contingency tables, it may happen that some observations are 

not fully cross-classified.  This issue has been studied for a long time.  One 

simple approach, known as complete-case(CC) analysis, discards the missing data 

by restricting analysis to only fully classified counts in an incomplete contingency 

table.

An alternative approach involves constructing a complete table, in which all 

cases are completed classified, by imputing information for the missing row or 

column classification.  Multiple imputation, proposed by Rubin (1978), provides a 

way to take advantage of commonly used tests of independence for completely 

classified tables.
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Fractional imputation was discussed by Kalton and Kish (1984) and Fay (1996).  

It is a hot deck imputation procedure that uses more than one responding unit as 

a donor for a missing unit. The fully efficient fractional imputation(FEFI) 

procedure described by Kim and Fuller (2004) uses every responding unit within a 

designated  imputation group as a donor for a unit with missing information.  

This provides a single completed table and has some practical advantages over MI 

in that a single completed table can be published  for public use.

Little and Rubin (2002) discuss three general mechanisms for missing data: 

missing completely at random(MCAR), missing at random(MAR), and not missing 

at random(NMAR).

Let X 1  and X 2  denote  categorical variables for a two-way incomplete 

contingency table.  If the missing probability of Xi  does not depend on either the 

value of the other variable or the value of Xi, then it is MCAR.  If the missing 

probability of Xi  depends on the value of the other variable but not on the  

value of Xi, then it is MAR.  If the missing probability of Xi  depends on its 

value, then it is NMAR.

FEFI is easily implemented in two-way incomplete contingency tables when we 

assume that the mechanisms that lead to missing dat are `MCAR'.  FEFI imputes 

a number of values for the missing information on each partially classified 

observation along with a set of weights.  

FEFI, and MI are reviewed in section 3. Small sample relative efficiency and 

bias are examined through  Monte Carlo simulation in section 4.  Methods for 

obtaining covariance matrices for FEFI estimates of population proportions are 

discussed in section 5.

2. Notation

Consider an I× J  contingency table where the row factor X 1  has I  categories 

and the column factorX 2  has J  categories.  Assume simple random sampling 

with replacement.  In a complete table, where the row and column categories are 

observed for every case in the sample, the counts have a multinomial distribution 

with sample size N  and probability vector  θ.  Let n ij  denote the count for the 

( i,j)  cell, and let θ ij, an element of θ, denote the population proportion for the 

( i,j)  cell. 

When information on either the row or column classification is missing, we can 

construct a table of counts for the completely classified cases where x ij  denotes 

the number of cases observed in the ( i,j)  cell. We can also construct one-way 
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tables of counts for partially classified cases.  Let x im  denote the number of 

cases in the i th  row category, i=1,2,…,I, where the column category is 

unknown, and let x mj  denote the number of cases in the j
th  column category, 

j=1,2,…,J, where the row category is unknown.  Then, x im  and x mj  are 

marginally observed counts on a single variable.  Let x mm  denote the number of 

cases where both the row and column categories are missing. The total sample 

size is

N = ∑
ij
x ij+∑

i
x im+∑

j
x mj+x mm

= n cc+x +m+x m++x mm.

3. Estimates of the population proportions

3.1 FEFI estimates under MCAR

Fully efficient fractional imputation(FEFI) is a kind of hot deck imputation 

which uses every responding unit as a donor for a missing unit within any 

particular imputation group.   For a two-way contingency table obtained from a 

sample with no auxiliary variables, the imputation group for a unit with observed 

value of the row factor X 1  but missing X 2, the value of the column factor, is 

the set of complete cases with the same value of X 1. Similarly, the imputation 

group for a unit with missing value of X 1  is the set of complete cases with the 

same value of X 2. This simplifies the implementation of FEFI.

For a unit with only X 2  missing, imputation fractions  for the J  possible 

values of X 2  are obtained from the conditional frequencies of X 2  in the 

cross-classified table of complete cases  given the observed value of X 1. The 

analogous procedure is used for any unit with only X 1  missing. For a unit with 

missing information for both X 1  and X 2, we impute I× J  possible values with 

imputation fractions corresponding to the joint frequencies of X 1  and X 2   

incorporating all partial information.

For example, consider a 2×2  incomplete contingency table where  X 1  and X 2  

assume values of 0 or 1 from a simple random sample of size N=88  and assume 

a completely missing at random mechanism. Table 1 shows observed counts for 

the 9 possible response patterns,  using `?' to indicate a missing value for the 

corresponding variable.
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Table 1: Response patterns for a 2×2   incomplete contingency table

X 1 1 1 0 0 ? ? 1 0 ?

X 2 1 0 1 0 1 0 ? ? ?

Counts 5 10 15 20 8 9 6 7 8

Imputed information for the 8 observations with pattern (?,1) is btained from the 

relative frequencies of the (1,1) and (0,1) responses as shown in Table 2. The 

imputation fraction for (1,1), given the (?,1) response pattern  is 

x 11/x +1=5/(5+15)=0.25, which corresponds to allocating 8×0.25= 2  counts 

to (1,1) from (?,1), and allocating 6 counts to (0,1) from (?,1). This procedure is 

repeated for the (?,0), (1,?), and (0,?) patterns yielding the allocated counts shown 

in Table 2.

Table 2: FEFI for partially classified  cases in Table 1

X 1 ? ? 1 0

X 2 1 0 ? ?

Counts 8 9 6 7

Allocation (1,1) (0,1) (1,0) (0,0) (1,1) (1,0) (0,1) (0,0)

FEFI 2 6 3 6 2 4 3 4

The updated complete table shown in Table 3, incorporates all partial 

information;  it does not include the units with missing information on both 

variables. The 8 observed counts in (?,?) are allocated to (1,1), (1,0), (0,1) or (0,0) 

with respect to the relative frequencies 9/80, 17/80, 24/80, 30/80 obtained from 

Table 3.  The resulting FEFI allocations from (?,?) are shown in Table 4. The 

completed table provided by FEFI is shown in Table 5.

Table 3: Updated table using complete and partial complete cases

X 1 1 1 0 0 ?

X 2 1 0 1 0 ?

Counts 9 17 24 30 8
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Table 4: FEFI for cases with no information

X 1 ?

X 2 ?

Counts 8

Allocation (1,1) (0,1) (1,0) (0,0)

FEFI 0.9 2.4 1.7 3

Table 5: FEFI completed table based on N

X 1 1 1 0 0

X 2 1 0 1 0

Counts 9.9 18.7 26.4 33

The counts in the completed table obtained by  fully efficient fractional 

imputation under simple random sampling are given by the following formula:

n̂ ij
*
= x ij+x ij(

x im
x i+

+
x mj
x + j )+

x ijx mm
N-x mm (1+

x im
x i+

+
x mj
x + j )

= x ij(1+
x im
x i+

+
x mj
x + j )(1+

x mm
N-x mm ),

       (1)

where x ij  is the observed count for fully observed cases prior to imputation, 

x i+= ∑
J

j=1
x ij  and x + j= ∑

I

i=1
x ij  . The total sample size is  N=∑

ij
n̂ ij

*
. 

Discarding the x mm  cases for which both variables are missing does not affect 

the relative allocation in the completed table.  The relative allocation in Table 5 is 

the same as the relative allocation in the first four columns of Table 3. Those 

cases do not contain any information about the joint distribution of X 1  and X 2. 

Therefore (1) can be simplified as

n̂ ij= x ij(1+
x im
x i+

+
x mj
x + j ),

 

with N   changed to n=N-x mm.   The FEFI estimates of the population 

proportions are
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θ̂ FEFI =
1
n
( n̂ 11 , n̂ 12 ,…, n̂ 1J, n̂ 21 , n̂ 22 ,…, n̂ 2J,…, n̂ IJ )

'

=
1
N
( n̂ 11

*,
n̂ 12

*,
…, n̂ 1J

*,
n̂ 21

*,
n̂ 22

*,
…, n̂ 2J

*,
…, n̂ IJ

*
)
'
.

      

3.2 MI estimates 

The multiple imputation(MI) procedure proposed by Rubin (1978) offers another 

possibility for estimation of cell probabilities for an incomplete contingency table. 

Suppose there are D  imputed data sets.   Each imputed data set  is analyzed 

using the standard complete-data method.  Let θ̂ d, d=1,…,D   be the standard 

complete-data estimates for the vector of cell probabilities from the D  imputed 

data sets.  Then, MI estimates of the cell probabilities are given by

θD=
1
D ∑

D

d=1
θ̂ d.

 

4.  Simulation Results
 

All of the 2×2  incomplete contingency tables for this study were generated 

with equal cell probabilities and data missing completely at random.  Four 

combinations of sample size and level of missing data were considered and 1000 

tables were generated for each combination. X 1  and X 2  were independently 

generated as Bernoulli(0.5) random variables. There are two levels 200 and 400 for 

the total sample size N. MXi  is a missing indicator variable independent of Xi.  

If MXi=1, the corresponding variable Xi  is missing. The four combinations of 

factors are summarized in Table 6. The percentages of cases with missing 

information on at least one variable are expected to be 19%, 36%, 51%, and 91% 

for combination 1, 2, 3, and 4, respectively.

Table 6: Combination of factors 

MXi∼Ber(p)

Combination N p

1 200 0.1

2 200 0.2

3 200 0.3

4 400 0.7
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θ 11 and θ 1+ θ +1- θ 11  were estimated by  FEFI,MI, and complete-case 

analysis(CC).  CC is a standard complete-data analysis discarding all missing 

cases.  For multiple imputation, data augmentation with Jeffreys noninformative 

prior(Box and Tiao, 1992)  was used to generate imputed data  and construct 5 

completed tables through S-PLUS 6.1(2001) functions for missing values. Mean 

and standard errors(S.E.) of 1000 values of the point estimates are shown in Table 

7 and Table 8.

Table 7 shows means and standard errors of 1000 values for the estimates of

θ 11.  The true value of θ 11  is 0.25.  All four methods provide essentially 

unbiased estimates for the cell probabilities. The standard errors of the estimates 

differ across methods. Complete-case analysis provides the estimate of θ 11  with 

the largest variance.  For all methods, variation increases as the proportion of 

missing values increases.  FEFI tends to provide smaller standard errors of cell 

proportion than MI in most cases, but the standard error of the MI estimator was 

smaller than FEFI for combination 4 which had largest  proportion of missing 

values.

Table 7: Estimation of θ 11  

 

Combination
FEFI  MI CC

 Mean S.E.  Mean S.E.  Mean S.E.

1  0.2488  0.0340  0.2488  0.0340  0.2489 0.0352

2  0.2489  0.0344  0.2487  0.0358  0.2491 0.0367

3  0.2483  0.0399  0.2485  0.0409  0.2490 0.0444

4  0.2513  0.0566  0.2521  0.0555  0.2518 0.0722

Table 8 shows means and standard errors of 1000 simulated values for the 

estimates of θ 1+ θ +1- θ 11, a measure of association between the two 

variables, when the true value of θ 1+ θ +1- θ 11  is 0. The averages of the 

estimates are similar for all methods, but the complete-case exhibits smaller 

standard errors than FEFI or MI.

Table 8: Estimation of θ 1+ θ +1- θ 11

  FEFI  MI  CC

 Combi.  Mean  S.E.  Mean  S.E.  Mean  S.E.

1  -0.000011  0.02002  0.000033  0.02042  -0.000010  0.01999

2  -0.000082  0.02242  0.000154  0.02311  -0.000079  0.02235

3  0.000815  0.02495  0.000627  0.02603  0.000792  0.02479

4  -0.000493  0.04277  -0.001406  0.04479  -0.000650  0.04117
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The imputation methods, FEFI and MI can not provide more information on 

association between two variables than what is present in the observed data. 

Although the imputation methods improve the estimation of individual cell 

probabilities relative to complete-case analysis, the covariance matrix for estimated 

cell probabilities is also affected by imputation.   

5. Variance of FEFI Estimates

An estimate of the large sample variance-covariance matrix of the FEFI 

estimates of cell probabilities  is derived using the delta method.

Let C0=(x 11,…,x 1J,x 21,…,x 2J,…x IJ,x m1,…,x mJ,x 1m,…x Im)
'. Conditional on 

the value of x mm, C 0    has a multinomial distribution with sample size 

n=N-x mm  and probabilities

π=(π 11,…,π 1J,π 21,…,π 2J,…π IJ,π m1,…,π mJ,π 1m,…π Im)
'.

The variance-covariance matrix of C 0  is Var(C 0)=n(Δπ-ππ
'
), where Δπ  is 

a diagonal matrix with the elements of π  on the main diagonal.

Each element of θ̂ FEFI  is a function of the elements of C 0. By the delta 

method, the variance of θ̂ FEFI   is derived as  

Var( θ̂ FEFI )=
1
n
D(Δπ-ππ

'
)D
'
≡ΣF,

 

where  

D p×q=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

∂ n̂ 11
∂x 11

…
∂ n̂ 11
∂x IJ

∂ n̂ 11
∂xm1

…
∂ n̂ 11
∂xmJ

∂ n̂ 11
∂x 1m

…
∂ n̂ 11
∂x Im

∂ n̂ 12
∂x 11

…
∂ n̂ 12
∂x IJ

∂ n̂ 12
∂xm1

…
∂ n̂ 12
∂xmJ

∂ n̂ 12
∂x 1m

…
∂ n̂ 12
∂x Im

⋯ ⋯ ⋯

∂ n̂ IJ
∂x 11

… … … …
∂ n̂ IJ
∂xmJ

∂ n̂ IJ
∂x 1m

…
∂ n̂ IJ
∂x Im

,

and p= I×J , q= I×J+ I+ J , with
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∂ n̂ ij
∂x cd

=

ꀊ

ꀖ

ꀈ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1+(
x im
x i+

+
x mj
x + j )-x ij(

x im

x2i+
+
x mj

x2+ j ), c= i and d= j
-( x ij

x im

x
2
i+ ), c= i, d≠j, and d≠m

-( x ij
x mj

x2+ j ), c≠i, d= j, and c≠m

x ij
x + j

, c=m and d= j

x ij
x i+

, c= i and d=m

0, otherwise.

By the Central Limit Theorem and the Delta method, the FEFI estimators have 

an approximate multivariate normal distribution with expectation θ  and variance

ΣF.

6. Discussion 

Imputation using FEFI or MI provides  more efficient estimates of cell 

probabilities than complete-case(CC) analysis.  When data are missing completely 

at random and  other covariates are not available, neither FEFI nor MI provides 

an improvement over complete-case(CC) analysis with respect to accuracy of 

estimation of some parameters for association between two variables like 

θ i+ θ + j- θ ij  and log odds-ratio.

When data are missing completely at random, FEFI is easier to implement than 

MI.  Explicit formulas for estimates of cell probabilities are given in (1).  If the 

missing mechanism does not satisfy missing completely at random(MCAR) 

criterion, complete-case(CC) analysis can produce biased estimates of joint 

probabilities and distorted p-value for tests of independence.  The  FEFI method 

described in this article yields consistent estimators of cell probabilities if the 

missing mechanism is MCAR, but it is not necessarily consistent if data are 

simply missing at random(MAR).   The allocation of the partially classified counts 

must be modified for fully efficient fractional imputation(FEFI) to provide 

consistent estimates for the MAR situation. MI provides consistent results under 

either the MAR situation.

Another approach to estimation of joint cell probabilities that can be applied 

when the missing mechanism is either MCAR or MAR is maximum likelihood 

estimation using both the complete and partially classified cases.  Little(1982) 

developed a simple EM algorithm for two way contingency tables. This approach 

does as well as FEFI in estimation of the joint probabilities, but variance 
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estimation is more complicated.  
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