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ABSTRACT

Multiple imputation, proposed by Rubin, is a procedure for handling missing data. One
of the attractive parts of multiple imputation is the simplicity of the variance estimation
formula. Because of the simplicity, it has been often abused and misused beyond its original
prescription. This paper provides the bias of the multiple imputation variance estimator for

a linear point estimator and discusses when the bias can be safely neglected.
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1 Introduction

Multiple imputation is a widely used method of handling missing data in biostatistical
and other investigations, including sample surveys. Rubin (1987) provides a comprehensive
description of multiple imputation, and Rubin (1996) cites an extensive bibliography on the
technique.

Multiple imputation is applied to a data set with missing items by repeating the process
of forming a completed data set several, say M, times, thus creating M completed data
sets. With multiple imputation, each of the M completed data sets can be used to estimate
a population parameter 6, and the overall estimate is the average of these M estimates.
The variance of this average is then obtained as the sum of two terms: the average of the
variances of the individual estimates from each data set computed in a standard way treating
imputed values as observed values; and a term involving the variance between the individual
estimates. The variance estimator computed in a standard way treating imputed values as
if observed is called naive variance estimator. Let éI(k) be the imputed estimator of 6 based
on the k-th imputed data set and let Vi) be the naive variance estimator of 6y(xy. Then,
the multiple imputation estimator of  is

M
GM,n =M Zgl(k),n (1)
k=1

and the associated variance estimator is
Vitn = Upmn + (1+M™Y) Bpgm, (2)

-1 M -1 M A A 2
where Unn = M~ 4L, Vigy and Bun = (M = 1) 7 2L, (Gr) = Oun) - We add &

subscript for the sample size n to éM,n and VM,n since later asymptotic results are functions
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of M and n. Rubin (1987) suggested using éM,n as a point estimator of @ and using VM,n
as a variance estimator of éM,n We call the variance estimator VM,,, in (2) Rubin’s variance
estimator.

Multiple imputation often make assumptions about the population to generate imputed
values. The assumptions to support the imputation procedure can be described as models,
called population model. Population model assumes that the finite population is a random
sample from an infinite population. The purpose of this paper is to investigate the frequentist
validity of the multiple imputation variance estimators under the population model used to
create multiple imputation. The starting point for our investigation is to express the multiple

imputation point estimator as
éM,n = én + (éM,n - én) (3)

where 0, is the full sample estimator without missing data. From (3), the total variance of

the multiple imputation point estimator is
Var (éM,n) =Var (én) + Var (éM,n - én) + 2Cov (én, éM,n — én) (4)

In this paper, we show that Un,, from (2) estimates Var (én) for most standard stochastic
imputation schemes including a Bayesian imputation scheme. We also show that Ba
+ M _1BM,,, from (2) estimates Var (éMn - én) when a Bayesian imputation scheme is
used. Rubin’s variance estimator assumes that the covariance term in (4) is zero. Under the
population model approach, we show that Rubin’s variance estimator is not always unbiased
because the covariance term is sometimes not equal to zero.

For the evaluation of the multiple imputation variance estimator, we consider the joint
distribution of the population model (¢), the sampling mechanism (p), the response mech-
anism (R), and the imputation mechanism (I). To avoid extraneous issues, we assume
that

(A.1) The sampling mechanism, the response mechanism, and the imputation mechanism

are ignorable under the assumed population model ¢.

(A.2) The complete sample point estimator is linear in the y-variable and approximately
design unbiased for the population mean. The complete sample variance estimator is
quadratic in the y-variable and is design unbiased.

(A.3) The imputed and original values have the same expected values:
E¢ (mqwy) = E¢ (Y1), (5)
where 7;(x) is the imputed value associated with unit ¢ for the k-th imputed data set.

(A.4) Let n) be the k-th imputed data set. Then, the M values of the imputed data set
are identically distributed:

Pr(ng € B) = Pr(ng € B), VkI<M. (6)

for any measurable set B.

-184-



o
2
ofd

Under (A.2), condition (5) is a sufficient condition for the imputed estimator to be unbiased.
By (6), the M naive variance estimators ‘7I(k) are identically distributed.

Given the above assumptions, we examine in the next two sections the conditions under
which Vs, in (2) is unbiased for Var (éM,n) in (4). For this purpose, we consider the two
components of VM,n separately. Section 2 determines general conditions under which the
naive variance estimator is approximately unbiased for the variance of the estimate based on
complete response, Var (én), and then applies the results to Ups,,. With a Bayesian impu-
tation scheme, Ups n, is shown to be asymptotically unbiased for Var (6,,). Section 3 shows
that (1 + M _1) B, estimates Var (é Mpn — én) when an appropriate Bayesian imputation
scheme is used. Section 4 considers the overall conditions for VM,,, to be approximately un-
biased for Var éM,n and provides some concluding remarks. The proofs of the theorems
are not provided here for brevity.

2 Evaluation of the within-imputation variance component

This section examines the use Ups n to estimate Var (én) With Upgn = M1 Zkle Vl(k),
and the fact that the \A/I(k) are identically distributed under assumption (A.4), examining
the unbiasedness of Ups,r, is equivalent to examining the unbiasedness of the naive variance
estimator f/z(k) for any one of the replicate data set.

We first establish a general lemma concerning the bias of the naive variance estimator
V; for estimating Var (én) and a theorem that gives the condition for the naive variance

estimator to be asymptotically unbiased for Var (én) These results are applicable for any
form of imputation, including Bayesian imputation.
To derive the general lemma, we note that the complete sample variance estimator is a

quadratic function of the sample values, and can therefore in general be written as

Va=2 > YY; (7)
iCAjeA
for some coeflicients €2;;, where A is the set of indices for the sample. Thus, the expectation of
VI is equal to the expectation of V,, if the mean and the covariance structures of the imputed
data set are the same as those of the original data set. Although the mean structures are
the same from assumption (A.3), the covariance structure need not be the same.
The following general result expresses the bias of the naive variance estimator for esti-
mating the anticipated sampling variance as a function of the difference of the covariance
term between the imputed data and the original data.

Lemma 2.1 Assume (A.1)-(A.3) hold. Then, the bias of the naive variance estimator as
an estimator of the sampling variance is

E (V[) - Var (én) =F Z ZQijTij (8)

iCAjEA
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where Q;; are the coefficients in (7) and 7,; = Cov¢r (m:, ;) — Cove (Y3, Y;) is the difference
between the covariance of the imputed values and the covariance of the original values.

The following theorem gives conditions under which the bias term is negligible.

Theorem 2.1 Assume (A.1)-(A.8) hold. Assume a sequence of finite populations as de-
scribed in Isaki and Fuller (1981) with finite fourth moments. Assume that

iCA jEA
If

max 7;; = op (1), (10)
1”]

then

lim 7 {E (V,) ~Var (én)} =0, (11)

where the S;; are the coefficient used in (7) and 7;; = Couv¢y (m:, ;) — Cove (Y3, Y;) is the
difference of the covariance between the imputed values and the original values.

The theorem follows directly from Lemma 2.1. Condition (9) generally holds for many
sampling designs, including stratified cluster sampling designs. Condition (10) requires
that the covariance structure for the imputed values is asymptotically the same as that for
the original values. This condition holds for many random imputation schemes, when the
number of respondents is much larger than the number of parameters in the imputation
model. Condition (10) also holds with Bayesian imputation, if the posterior values of the
missing items are created with sufficient degrees of freedom. For more details, see Kim
(2002).

3 Evaluation with the between-imputation variance component

The section evaluates the between-imputation variance component (1 + M _1) B ,n in (2).

To do this, we express éM,n as
éM,n = én + (éoo,n - én) + (éM,n - éoo,n) (12)

where éoo,n = limy oo éM,n is the infinite-M multiple imputation point estimator. The
previous section has considered the use of Ups, to estimate the variance of én We are now
concerned with the second and third terms on the right hand side of (12).

The following theorem shows that, in general, By n is unbiased for the variance of the
second term on the right hand side of (12) if Bayesian imputation is used.

Theorem 3.1 Let Yop, and Yo,is be the observed part and the missing part of the sample, re-
spectively. Assume Bayesian imputation, where the imputed values are independently drawn
from the conditional distribution L (Yonis | Yobs) of Yinis given Yops. Assume that there exists

a positive § such that

/én ()/obsa ~Ym'is)2+‘s dL (Ymis | }/obs) < oo (13)
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almost everywhere in Yops. Then, we have
lim {E (Bum.n) - Var (éM,n - éw,n)} =0 (14)
M—co
for all n.

We now consider the case of finite M, that is, we consider the third term, (éM,n - éoo_n),
in (12). In the following theorem, we show that M ‘IBM,,. can be used to estimate the
variance of (éM,n —éw,n) and that the covariance between éoo,n and (BM,,, - 000,,1) is

equal to zero.

Theorem 3.2 Assume (A.4) holds so that the M imputed estimators, é[(k), are identically
distributed. Then, we have

B (M7 Byn) = Var (a0 — ooyn ) (15)
and
Cov (éw,n, Orn — boon) =0 (16)
for all M > 2 and n.

4 Conclusion
By combining the results of Lemma 2.1, Theorem 3.1, and Theorem 3.2, we obtain the
following result.

Theorem 4.1 Assume (A.1)-(A.4) and the assumptions of Theorem 3.1 hold. Then, the

bias of Rubin’s variance estimator is, for large n and M,
Bias (\‘/M,,,) =B Q| —2C0v (én, 67t = 0) (17)
i€EAJEA
where Q5 are the coefficients in (7) and 7;; = Cover (15, m5) — Cove (Y3, Y;) is the difference
between the covariance of the imputed values and the covariance of the original values.

The first term in the right side of (17) is the bias of Up», as an estimator of the variance of
6y, and will be negligible for many random imputations. The second term is a potential bias
that is not captured by Rubin’s variance estimator. Note that, since é,-(k) (k=1,2,---,M)
are identically distributed, Cov (én, éMyn - 5n) = Cov (én, él(k) - én) Hence, this second
term is not dependent on M.

A sufficient condition for the second term to be negligible is

Eq (éM,n) - An = o0p (‘n,_l/z) . (18)
To see this, note that
nCov¢pr (én, éM,n - én) = Couv¢p {nl/zémnl/zER (éMn - én)}

+nEep {CO’UR (én, éM,n — én)} .
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The first term in the right side of the above equality is o (1) as by (18) and the second term
is also equal to zero because 8, is a constant under the response mechanism.

Assumption (18) implies a negligible correlation between the sampling error and the im-
putation error. In Rubin (1987) this condition is the first requirement of proper imputation.
Note that assumption (18) is not an essential requirement for the approximate unbiasedness
of the multiple imputation point estimator. The point estimator is in fact approximately
unbiased under the weaker assumption that

ECP {ER (éM,n) - én} =o0 (n—1/2) . (19)
In particular, domain estimation with the iid model satisfies (19) but not (18). However,
if only (19) holds, we have to estimate the covariance term to obtain an unbiased variance
estimate rather than rely on Rubin’s variance estimator.

Although not derived here, we have also investigated the covariance term in {4) under
the linear regression models used by Schenker and Welsh (1988}, and concluded that the
covariance can be made to equal zero by the inclusion of the appropriate set of auxiliary
variables in the model. In particular, when the complete sample estimator is linear in the
y-variable, then Rubin’s variance estimator is unbiased for the variance of that estimator
provided that the final weight used in producing the estimator is included as one of auxiliary
variables in the imputation model. The final weight for estimators of parameters of the total
population is the standard weight in the data file. However, for a subgroup estimator, the
final weight is the weight in the data file for unit in the subgroup and is zero for other
units. For preplanned subgroup analyses, it may be possible to include all the required sets
of final weights in the model. However, for unplanned subgroup analysis this will not be
possible. If the final weights for a particular estimator are not included in the model, then
Rubin’s variance estimator will be biased. The domain estimation problem highlighted by
Fay (1992) is of this type.
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