• Title/Summary/Keyword: Multiple chemical sensitivity

Search Result 31, Processing Time 0.028 seconds

Multiple Chemical Sensitivity in Chemical Laboratory Workers

  • Perez-Crespo, Juan;Lobato-Canon, Rafael;Solanes-Puchol, Angel
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.473-478
    • /
    • 2018
  • Background: Multiple Chemical Sensitivity (MCS) is an acquired disease which etiology remains unknown. It is characterized by the development of sensitivity to certain chemical products. Most of the hypotheses formulated to explain the syndrome associate it to a previous exposition to some kind of volatile chemical. University researchers in chemical laboratories suffer a phenomenon of multi-exposition to chemical agents at low concentration during long periods of time although in an irregular form. Many of these chemical agents have similar properties to those suspicious of causing MCS. This article studies the prevalence of MCS in laboratory researchers. Methods: The study group is university researchers in chemical laboratories. The control group was obtained from administrative personnel who work in the same universities and therefore, are not exposed to chemical products from the laboratories, but have the same exposition to the rest of environmental polluting agents from the area and from the buildings of the university. In this study, it is used the Quick Environmental Exposure and Sensitivity Inventory (QEESI) (sensitivity of 92%/specificity of 95%). Results: The results showed that the prevalence of MCS for the university researchers is not related to exposition by inhalation to multiple chemical agents, at low concentration. Conclusions: The results disagree with one of the main etiological hypotheses of MCS, which is based on the existence of hypersensitive people, who presents a response after prolonged expositions to very low concentrations during a long period of time.

Detection of ${\alpha}-Cyclodextrin$ and E.coli Cell Using Polydiacetylene Supramolecules

  • Lee, Gil-Sun;Choi, Hyun;Lee, Chung-Wan;Ahn, Dong-June;Oh, Min-Kyu;Kim, Jong-Man
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.306-306
    • /
    • 2006
  • We immobilized and patterned PDA vesicles on solid substrate using micro arrayer, which have moieties to react with chemical and biological materials. Immobilized vesicle system was developed since it possesses many advantages in multiple screening, durable stability, and higher sensitivity. We applied polydiacetylene supramolecules to chemical and biological sensors for detection of ${\alpha}-cyclodextrin$ and E.coli cell selectively. This detection method could be applied as DNA chip, protein chip, and cell chip for multiple screening as well as chemical sensor by modifying the functional groups of diacetylene monomer.

  • PDF

Moist and Mold Exposure is Associated With High Prevalence of Neurological Symptoms and MCS in a Finnish Hospital Workers Cohort

  • Hyvonen, Saija;Lohi, Jouni;Tuuminen, Tamara
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2020
  • Background: Indoor air dampness microbiota (DM) is a big health hazard. Sufficient evidence exists that exposure to DM causes new asthma or exacerbation, dyspnea, infections of upper airways and allergic alveolitis. Less convincing evidence has yet been published for extrapulmonary manifestations of dampness and mold hypersensitivity syndrome). Methods: We investigated the prevalence of extrapulmonary in addition to respiratory symptoms with a questionnaire in a cohort of nurses and midwives (n = 90) exposed to DM in a Helsinki Obstetric Hospital. The corresponding prevalence was compared with an unexposed cohort (n = 45). Particular interest was put on neurological symptoms and multiple chemical sensitivity. Results: The results show that respiratory symptoms were more common among participants of the study vs. control cohort, that is, 80 vs 29%, respectively (risk ratio [RR]: 2.56, p < 0.001). Symptoms of the central or peripheral nervous system were also more common in study vs. control cohort: 81 vs 11% (RR: 6.63, p < 0.001). Fatigue was reported in 77 vs. 24%, (RR: 3.05, p < 0.001) and multiple chemical sensitivity in 40 vs. 9%, (RR: 3.44, p = 0.01), the so-called "brain fog", was prevalent in 62 vs 11% (RR: 4.94, p < 0.001), arrhythmias were reported in 57 vs. 2.4% (RR: 19.75, p < 0.001) and musculoskeletal pain in 51 vs 22% (RR: 2.02, p = 0.02) among participants of the study vs. control cohort, respectively. Conclusion: The results indicate that the exposure to DM is associated with a plethora of extrapulmonary symptoms. Presented data corroborate our recent reports on the health effects of moist and mold exposure in a workplace.

Numerical Investigation on Surface Plasmon Resonance Sensor Design with High Sensitivity Using Single and Bimetallic Film Structures (고감도 단금속 및 쌍금속 표면 플라즈몬 공명 센서 설계를 위한 수치해석 연구)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.795-800
    • /
    • 2009
  • Surface plasmon resonance (SPR) has been widely used for biological and chemical sensing applications. The present study investigates numerically the optical characteristics for the single Au film and bimetallic Ag/Au film SPR configurations by using the multiple beam interference matrix (MBIM) method. We use the prism coupling method, especially Kretschmann configuration for excitation of surface plasmon wave (SPW). The estimated results of reflectance, phase shift and magnetic field intensity enhancement factor are provided for finding out the optimum configuration with high sensitivity for SPR measurement. As a result, the optimum thicknesses are found to be 52 nm for a single Au film and 5 nm to 36 nm for bimetallic Ag-Au film. From the comparison of full width half maximum (FWHM) values for reflectance, phase shift, and enhancement of magnetic field intensity, it is concluded that the highest sensitivity can be obtained when using the phase shift for SPR sensor.

Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods

  • Baher, Elham;Darzi, Naser;Morsali, Ali;Beyramabadi, Safar Ali
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.483-487
    • /
    • 2015
  • The different calculated quantum chemical descriptors by DFT method were used for prediction of some sulphanilamide Schiff bases inhibitor activity as a binding constant (log K). Multiple linear regression (MLR) and artificial neural network (ANN) were employed for developing the useful quantitative structure activity relationship (QSAR) model. The obtained results presented superiority of ANN model over the MLR one. The offering QSAR model is very easy to computation and Physico-Chemically interpretable. Sensitivity analysis was used to determine the relative importance of each descriptor in ANN model. The order of importance of each descriptor according to this analysis is: molecular volume, molecular weight and dipole moment, respectively. These descriptors appear good information related to different structure of sulphanilamide Schiff bases can participate in their inhibitor activity.

HMQC vs HSQC for Small Molecules

  • Kim, Eunhee;Cheong, Hae-Kap
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.131-134
    • /
    • 2017
  • Proton detected Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Single Quantum Coherence (HSQC) essentially provide the same information - correlation of the chemical shift of the proton to J-coupled hetero nuclei such as $^{13}C$ or $^{15}N$ nuclei. This paper is a practical note for the students who ask which one is better and which methods they use routinely. Artifact suppression using phase cycling and gradient pulses are discussed.