Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.6.483

Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods  

Baher, Elham (Department of Chemistry, faculty of science, Golestan university)
Darzi, Naser (Department of Chemistry, Mashhad Branch, Islamic Azad University)
Morsali, Ali (Department of Chemistry, Mashhad Branch, Islamic Azad University)
Beyramabadi, Safar Ali (Department of Chemistry, Mashhad Branch, Islamic Azad University)
Publication Information
Abstract
The different calculated quantum chemical descriptors by DFT method were used for prediction of some sulphanilamide Schiff bases inhibitor activity as a binding constant (log K). Multiple linear regression (MLR) and artificial neural network (ANN) were employed for developing the useful quantitative structure activity relationship (QSAR) model. The obtained results presented superiority of ANN model over the MLR one. The offering QSAR model is very easy to computation and Physico-Chemically interpretable. Sensitivity analysis was used to determine the relative importance of each descriptor in ANN model. The order of importance of each descriptor according to this analysis is: molecular volume, molecular weight and dipole moment, respectively. These descriptors appear good information related to different structure of sulphanilamide Schiff bases can participate in their inhibitor activity.
Keywords
Sulphanilamide Schiff bases; QSAR; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Badger, M.; Price, G. Annu. Rev. Plant Physiol. Plant Mol. Bio. 1994, 45, 369.   DOI
2 Supuran, C. T.; Winum, J. Y. (Eds.). Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; John Wiley & Sons: U.S.A., 2009.
3 Beal, M. T.; Hagan, H. B.; Demuth, M. Neural Network Design; PWS: U.S.A., 1996.
4 Bose, N. K; Liang, P. Neural Network-Fundamentals; McGraw-Hill: U.S.A., 1996.
5 Patterson, D. W. Artificial Neural Networks: Theory and Applications; Prentice Hall: U.S.A., 1996.
6 Fatemi, M. H.; Baher, E. SAR QSAR Environ. Res. 2009, 20, 77.   DOI
7 SPSS/PC, Statistical Package for IBMPC, Quiad software,Ontario, 1986.
8 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI
9 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI
10 Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb,M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G.; Wallingford, CT. 2009.
11 Supuran, C. T.; Clare, B. W. Eur. J. Med. Chem. 1998, 33, 489.   DOI
12 Qiu, H. Y.; Wang, Z. C.; Wang, P. F.; Yan, X. Q.; Wang, X.M.; Yang, Y. H.; Zhu, H. L. RSC Advances. 2014, 4, 39214.   DOI
13 Singh, S.; Supuran, C. T. J. Enzyme. Inhib. Med. Chem. 2014, 29, 449.   DOI
14 Agrawal, V. K.; Srivastava, S.; Khadikar, P. V.; Supuran, C.T. Bioorganic Medicinal Chemistry. 2003, 11, 5353.   DOI
15 Eroğlu, E.; Türkmen, H.; Güler, S.; Palaz, S.; Oltulu, O. Int. J. Mol. Sci. 2007, 8, 145.   DOI
16 Eroglu, E. Int. J. Mol. Sci. 2008, 9, 181.   DOI
17 Supuran, T. C.; Scozzafava, A.; Casini, A. Medicinal Research Reviews. 2003, 23, 146.   DOI
18 Nord, L. I.; Jacobsson, S. P. Chemom. Intell. Lab. Syst. 1998, 44, 153.   DOI
19 Jalali-Heravi, M.; Fatemi, M. H. Anal. Chim. Acta. 2000, 415, 95.   DOI