• 제목/요약/키워드: Multiple action detection

Search Result 22, Processing Time 0.043 seconds

Spatial-Temporal Scale-Invariant Human Action Recognition using Motion Gradient Histogram (모션 그래디언트 히스토그램 기반의 시공간 크기 변화에 강인한 동작 인식)

  • Kim, Kwang-Soo;Kim, Tae-Hyoung;Kwak, Soo-Yeong;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1075-1082
    • /
    • 2007
  • In this paper, we propose the method of multiple human action recognition on video clip. For being invariant to the change of speed or size of actions, Spatial-Temporal Pyramid method is applied. Proposed method can minimize the complexity of the procedures owing to select Motion Gradient Histogram (MGH) based on statistical approach for action representation feature. For multiple action detection, Motion Energy Image (MEI) of binary frame difference accumulations is adapted and then we detect each action of which area is represented by MGH. The action MGH should be compared with pre-learning MGH having pyramid method. As a result, recognition can be done by the analyze between action MGH and pre-learning MGH. Ten video clips are used for evaluating the proposed method. We have various experiments such as mono action, multiple action, speed and site scale-changes, comparison with previous method. As a result, we can see that proposed method is simple and efficient to recognize multiple human action with stale variations.

Trends in Temporal Action Detection in Untrimmed Videos (시간적 행동 탐지 기술 동향)

  • Moon, Jinyoung;Kim, Hyungil;Park, Jongyoul
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.20-33
    • /
    • 2020
  • Temporal action detection (TAD) in untrimmed videos is an important but a challenging problem in the field of computer vision and has gathered increasing interest recently. Although most studies on action in videos have addressed action recognition in trimmed videos, TAD methods are required to understand real-world untrimmed videos, including mostly background and some meaningful action instances belonging to multiple action classes. TAD is mainly composed of temporal action localization that generates temporal action proposals, such as single action and action recognition, which classifies action proposals into action classes. However, the task of generating temporal action proposals with accurate temporal boundaries is challenging in TAD. In this paper, we discuss TAD technologies that are considered high performance in terms of representative TAD studies based on deep learning. Further, we investigate evaluation methodologies for TAD, such as benchmark datasets and performance measures, and subsequently compare the performance of the discussed TAD models.

Improved Two-Phase Framework for Facial Emotion Recognition

  • Yoon, Hyunjin;Park, Sangwook;Lee, Yongkwi;Han, Mikyong;Jang, Jong-Hyun
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1199-1210
    • /
    • 2015
  • Automatic emotion recognition based on facial cues, such as facial action units (AUs), has received huge attention in the last decade due to its wide variety of applications. Current computer-based automated two-phase facial emotion recognition procedures first detect AUs from input images and then infer target emotions from the detected AUs. However, more robust AU detection and AU-to-emotion mapping methods are required to deal with the error accumulation problem inherent in the multiphase scheme. Motivated by our key observation that a single AU detector does not perform equally well for all AUs, we propose a novel two-phase facial emotion recognition framework, where the presence of AUs is detected by group decisions of multiple AU detectors and a target emotion is inferred from the combined AU detection decisions. Our emotion recognition framework consists of three major components - multiple AU detection, AU detection fusion, and AU-to-emotion mapping. The experimental results on two real-world face databases demonstrate an improved performance over the previous two-phase method using a single AU detector in terms of both AU detection accuracy and correct emotion recognition rate.

Real-Time Cattle Action Recognition for Estrus Detection

  • Heo, Eui-Ju;Ahn, Sung-Jin;Choi, Kang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2148-2161
    • /
    • 2019
  • In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.

Video System for Real-time Criminal Activity Detection (실시간 범죄행위 감지를 위한 영상시스템)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.357-358
    • /
    • 2021
  • Although many people watch the scene with multiple surveillance cameras, it is difficult to ensure that immediate action can be taken in the event of a crime. Therefore, there is a need for a "crime behavior detection system" that can analyze images in real time from multiple surveillance cameras installed in elevators, call immediate crime alerts, and track crime scenes and times effectively. In this paper, a study was conducted to detect violent scenes occurring in elevators using Scene Change Detection. For effective detection, an x2-color histogram combining color histogram and histogram was applied.

  • PDF

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

Multiple Pedestrians Detection using Motion Information and Support Vector Machine from a Moving Camera Image (이동 카메라 영상에서 움직임 정보와 Support Vector Machine을 이용한 다수 보행자 검출)

  • Lim, Jong-Seok;Park, Hyo-Jin;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • In this paper, we proposed the method detecting multiple pedestrians using motion information and SVM(Support Vector Machine) from a moving camera image. First, we detect moving pedestrians from both the difference image and the projection histogram which is compensated for the camera ego-motion using corresponding feature sets. The difference image is simple method but it is not detected motionless pedestrians. Thus, to fix up this problem, we detect motionless pedestrians using SVM The SVM works well particularly in binary classification problem such as pedestrian detection. However, it is not detected in case that the pedestrians are adjacent or they move arms and legs excessively in the image. Therefore, in this paper, we proposed the method detecting motionless and adjacent pedestrians as well as people who take excessive action in the image using motion information and SVM The experimental results on our various test video sequences demonstrated the high efficiency of our approach as it had shown an average detection ratio of 94% and False Positive of 2.8%.

Agent's Activities based Intention Recognition Computing (에이전트 행동에 기반한 의도 인식 컴퓨팅)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2012
  • Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.

A Study on Intelligent On-line Tool Conditon Monitoring System for Turning Operations (선삭공작을 위한 지능형 실시간 공구 감시 시스템에 관한 연구)

  • Choe, Gi-Hong;Choe, Gi-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.22-35
    • /
    • 1992
  • In highly automated machining centers, intelligent sensor fddeback systems are indispensable on order to monitor their operations, to ensure efficient metal removal, and to initate remedial action in the event of accident. In this study, an on-line tool wear detection system for thrning operations is developed, and experimentally evaluated. The system employs multiple sensors and the signals from these sensors are processed using a multichannel autoegressive (AR) series model. The resulting output from the signal processing block is then fed to a previously tranied artificial neural network (multiayered perceptron) to make a final decision on the state of the cutting tool. To learn the necessary input/output mapping for tool wear detection, the weithts and thresholds of the network are adjusted according to the back propagation (BP) method during off-line training. The results of experimental evaluation show that the system works well over a wide range of cutting conditions, and the ability of the system to detect tool wear is improved due to the generalization, fault-tolearant and self-ofganizing properties of the neural network.

  • PDF

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.