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Automatic emotion recognition based on facial cues, 
such as facial action units (AUs), has received huge 
attention in the last decade due to its wide variety of 
applications. Current computer-based automated two-
phase facial emotion recognition procedures first detect 
AUs from input images and then infer target emotions 
from the detected AUs. However, more robust AU 
detection and AU-to-emotion mapping methods are 
required to deal with the error accumulation problem 
inherent in the multiphase scheme. Motivated by our key 
observation that a single AU detector does not perform 
equally well for all AUs, we propose a novel two-phase 
facial emotion recognition framework, where the presence 
of AUs is detected by group decisions of multiple AU 
detectors and a target emotion is inferred from the 
combined AU detection decisions. Our emotion 
recognition framework consists of three major 
components — multiple AU detection, AU detection fusion, 
and AU-to-emotion mapping. The experimental results on 
two real-world face databases demonstrate an improved 
performance over the previous two-phase method using a 
single AU detector in terms of both AU detection accuracy 
and correct emotion recognition rate. 
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I. Introduction 

Automatic recognition of human behaviors in general and 
emotions in particular has a wide variety of applications such 
as human–computer interaction, healthcare, computer-assisted 
learning, serious games, and security. Among the various 
channels of the human body that communicate emotions, non-
verbal information, such as facial expressions, plays an 
important role in the analysis of human affective behaviors [1].  

The Facial Action Coding System (FACS) proposed by 
Ekman and Friesen [1] is a method of describing facial 
movement based on the atomic activity of individual or groups 
of muscles called action units (AUs) (see Table 1). The FACS 
defines a total of 44 AUs, from which it is possible to represent 
nearly all human facial expressions by some combination 
thereof; this includes the facial expressions for the six basic 
emotions — anger, disgust, fear, happiness, sadness, and 
surprise. For example, the prototypical facial expression 
displaying “happiness” is configured in terms of AU6 (Check 
Raiser) and AU12 (Lip Corner Puller), according to the 
emotion prediction table featured in [1].  

Automatic emotion recognition based on facial cues has 
been extensively exploited in the past [2]–[8], and related 
existing techniques can be roughly classified into either single-
phase recognition — where emotions are directly recognized 
from face images — or two-phase recognition — where AUs 
are first detected and underlying emotions are then inferred 
from the detected AUs. The former often leads to a complex 
recognition model that consists of a larger number of variables, 
thus requiring longer training time and more training data.  
Detecting AUs prior to the occurrence of a facial emotion 
makes emotion recognition more interpretable by providing an 
explicit visual evidence for the recognized emotion.  
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Table 1. Visual examples of selected FACS AUs [1]. 
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A major issue with two-phase emotion recognition is that of 

the error accumulation problem, which, in fact, is inherent in 
any multiphase scheme. That is, the performance of emotion 
inference from automatically detected AUs is hindered by 
incorrectly identified or missed AUs. To attain recognition rates 
similar to that of a single-phase approach, a two-phase 
approach requires both robust AU detection and mapping of 
AUs to emotions to reduce any accumulated errors.  

Automatic AU detection has been extensively explored and 
many good techniques have been developed [3]–[7]. However, 
none of them has achieved satisfactory performance for all 
considered AUs. According to a recent comparison of four 
state-of-the-art AU detection methods [4], those whose AU 
detectors used geometric facial features outperformed those 
who used texture features, on AUs whose activations are well 
characterized by morphological changes, such as AU1 and 
AU2. However, some of them fail in detecting AUs where 
there are distinct changes in skin texture, such as AU7 and 
AU15.  

Motivated by our key observation that a single AU detector 
does not perform equally well for all AUs, we propose a new 
two-phase facial emotion recognition framework, where the 
presence of AUs is determined by group decisions of multiple 
independent AU detectors and a target emotion is inferred from 
the combined AU detection results. The proposed framework 
consists of three major components — multiple AU detection, 
AU detection fusion, and AU-to-emotion mapping. The 
emphasis of this research is on the second of these components, 
where we introduce two types of decision fusion methods 
called label-output fusion and probability-output fusion, which 
combines the individual decisions of the multiple AU detectors 
and presents the combined decision in a categorical and 
dimensional value, respectively. Given the automatically 

detected and fused AUs, emotion recognition can be performed 
by mapping the combined AU detection decision to six basic 
emotions through either a rule-based, longest-common- 
subsequence-based, or model-based AU-to-emotion mapping 
model.  

To demonstrate the effectiveness of our proposed framework, 
the recognition performance of every possible combination of 
eight AU detection fusion methods and three mapping models 
(13 combinations in total) is evaluated and compared with that 
of previous two-phase emotion recognition, which employs a 
single AU detector over two real-world face image databases.  

The rest of this paper is organized as follows. Section II 
reviews previous work on automatic methods for emotion-
specified facial expression recognition. The proposed two-
phase emotion recognition framework is presented in detail in 
Section III. Section IV provides experimental evaluations, and 
Section V concludes the paper.  

II. Related Work 

This section describes related work on emotion recognition 
based on facial cues. Detailed reviews related to this field of 
work can be found in [8].  

1. Single-Phase Facial Emotion Recognition  

In single-phase emotion recognition, emotions are directly 
recognized from input face images. Previous efforts have 
emphasized types of facial features and classifiers. Cohen and 
others [9] employed a tree-augmented naïve Bayes classifier to 
learn the dependencies among different motion features and 
hidden Markov models (HMMs) to recognize the emotions 
from these correlated motion features. Barlett and others [10] 
empirically demonstrated that the best results for classifying 
facial expressions into basic emotions are achieved by using 
multiclass support vector machines (SVMs) as classifiers and 
feature selection by AdaBoost.  

Recent single-phase methods consider the relationship 
between FACS’s AUs and emotions to improve the 
performance of emotion recognition. Chang and others [11] 
employed emotion-related facial AUs as partially observed 
hidden state variables in their graphical model based on hidden 
conditional random fields, and demonstrated that knowing the 
AUs provides useful evidence for distinguishing emotions. 
Zhang and Ji [12] exploited the dependencies between AUs 
and basic emotions, and established a Bayesian network (BN) 
model consisting of three layers — classification layer, AU 
layer, and sensory data layer — to classify input images into six 
basic emotions.  

Direct emotion recognition from facial features attains better 
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recognition rates than a two-phase approach. However, this 
often leads to a complex recognition model that consists of a 
larger number of variables and requires longer training time as 
well as more training data. 

2. Two-Phase Facial Emotion Recognition  

Two-phase emotion recognition consists of two parts — AU 
detection and AU-to-emotion mapping. Previous work on 
automatic detection of facial AUs has focused mainly on the 
types of facial features and classifiers similar to those found  
in one-phase emotion recognition. Donato and others [4] 
empirically compared various representations of face images 
and demonstrated that Gabor wavelet features and independent 
component analysis are useful for classifying facial actions. 
Bartlett and others [10] applied SVMs to the Gabor wavelet 
coefficients of a face image to detect AUs. Valsta and Pantic [6] 
combined SVMs and HMMs to create AU classifiers that can 
incorporate the temporal dynamics of AU activation, and 
demonstrated that AU detectors employing such classifiers 
outperform an SVM-only approach, for many AUs. Li and 
others [3] proposed a data-free prior model for facial AU 
detection that generalizes to new databases. Although many 
good techniques have been developed for automatic detection 
of AUs, none of them has achieved satisfactory performance 
for all considered AUs.  

The mapping of AUs to emotions has also been explored in 
the past. A few deterministic rules that map facial AUs to 
emotions have been developed by exploiting the linguistic 
description of emotions in terms of AUs provided by domain 
experts [13]–[14]. Valstar and Pantic [15] have formulated a set 
of mapping rules based on emotional FACS and also used 
artificial neutral networks (ANNs) to map AUs to six basic 
emotions. Alternatively, Velusamy and others [16] derived 
most discriminant AUs for each emotion and inferred an 
underlying emotion by comparing detected AUs with the 
selected discriminant AUs of each emotion using the longest 
common subsequence (LCS) distance.  

While most rule-based mapping methods use strict matching, 
an LCS-based mapping allows partial matching, to make an 
AU-to-emotion mapping robust to false positives and misses 
among automatically detected AUs.  

III. Proposed Method 

In this section, we present our two-phase facial emotion 
recognition framework, which decides the presence of AUs by 
group decisions of multiple AU detectors and infers a target 
basic emotion from a set of combined AU detection results. 
The proposed framework consists of three major components  

z 
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Fig. 1. Flow of our emotion recognition framework. 
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— multiple AU detection, AU detection fusion, and AU-to-
emotion mapping. The first two components compose the AU 
detection phase and the last constitutes the second phase of the 
two-phase emotion recognition scheme. 

Given a set of training face images fully labelled with the 
expected AUs and emotions, our framework first trains models 
with the training data for the three components, named AU 
detector, fusing model, and mapper, respectively. Once the 
models are obtained from the training data, the proposed 
framework takes the facial features extracted from the detected 
face region in an unknown input face image; detects the 
presence of target AUs using the trained multiple AU detectors; 
combines the individual decisions of the multiple AU detectors 
by the fusing model to decide a final decision on the AU 
presence; and infers the emotions from the fused AUs using the 
AU-to-emotion mapper. Figure 1 shows the flow of our two-
phase emotion recognition framework. A detailed description 
of each part is given in the following sections. 

1. Multiple AU Detection  

Our two-phase framework employs multiple AU detectors  
to detect the presence, or absence, of target AUs with group 
decisions. Based on our detailed review on the linguistic 
description of emotions in terms of FACS AUs [13]–[14] and 
available face databases coded with AUs and emotions [14], 
[17], we chose 17 AUs that are found to be relevant to the 
recognition of six basic emotions (see the selected AUs in 
Table 1). For each of the 17 selected AUs, multiple AU 
detectors are individually trained with different detection 
methods or different portions of training data. Such AU 
detectors take various types of facial features as the description 
of an input face image and recognize the presence (or absence) 
of target AUs.  
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Classifiers such as ANN, SVM, boosting, HMM, and 
dynamic Bayesian networks (DBNs) as well as facial features 
such as grayscale pixels, edges, and appearance descriptors can 
be employed to model an individual AU detector. However, it 
is assumed that the output of such a detector is presented in a 
binary form representing the complete presence (or absence) of 
a target AU.  

2. AU Detection Fusion 

AU detection fusion can be considered as the process by 
which individual decisions of multiple AU detectors are 
combined to produce a final decision on the presence of target 
AUs for the subsequent AU-to-emotion mapping phase.  

Let dk be the AU detector that detects the presence or 

absence of a certain AU, where k = 1, … , K; here, K is the total 

number of AU detectors. Given an input face image, x, 

( ) ˆk kd x y  means AU detector dk assigns the input x to value 
ˆ ,ky  where ˆ 1ky   if the presence of the target AU is detected 

from the input x; otherwise, ˆ 0.ky   Then, the AU detection 

fusion can be formulated as follows: given outputs of multiple 

AU detectors for a target AU 1 1 2 2( ) , ( ) , ,ˆ ˆd x y d x y    

( ) ˆ ,K Kd x y the goal is to determine ( ,ˆ)D x y  where D is 

the fusing function that combines the outputs of the multiple 

AU detectors and assigns x to a value [0 1]ˆ ,y   

 |ˆ ˆ0 1 .y y    The output of the fusing function can be 

interpreted as the class membership probability that reflects the 

uncertainty with which the given face image x can be assigned 

to the target AU class. The closer to one the output value is, the 

more likely the target AU is presented in the input face image.  
According to the output types, the fusing function is further 

divided into either probability-output fusion, where the fusing 
function assigns any real number between zero and one, 
including both or label-output fusion, where the outputs are 
limited to only two endpoints (that is, ˆ {0,1}y ) representing 
the complete absence or presence of the target AU, 
respectively. 

A. Label-Output Fusion 

Since the outputs of individual AU detectors are binary 
numbers, the label-output fusion method can obtain a decision 
via a voting-based scheme. We propose five label-output fusion 
methods by adopting conventional voting schemes such as 
majority, unanimous, and weighted-majority voting. 

First, a majority vote–based label-output fusion method 
determines a final decision by selecting the decision that more 
than half of the individual AU detectors agree on. Thus, the 
resulting fusing function for this method, Dm, can be 
formulated as follows:  

1
m

1 / 2,
( )

0 otherwi

ˆ
ˆ

se.

K
kk

y K
D x y 

   


         (1) 

Alternatively, a unanimous vote–based label-output fusion 
method determines the presence of a target AU only when all 
individual AU detectors agree on the presence of the target AU. 
Therefore, the resulting unanimous vote–based fusing function, 
Du, can be defined as follows: 

1
u

ˆ1 ,
( )

0 other ise.
ˆ

w

K
kk

y K
D x y 

   


           (2) 

Both the majority and unanimous vote–based label-output 
fusion methods are straightforward in that they do not need any 
training. Also, as can be seen in (1) and (2), they treat the 
outputs of individual AU detectors with equal weight assuming 
no a-priori knowledge on the behaviors of individual AU 
detectors. However, when a-priori information about the 
quality of individual AU detectors is available, better fusion 
methods can be explored.  

Our weighted majority vote–based fusion method exploits 
the performance of individual AU detectors for known face 
images to derive the weights of multiple AU detectors and then 
a final decision is made by taking the decision that has higher 
weighted votes. The weighted majority vote–based fusion 
function Dw is thus formulated as follows: 

1; 1 1ˆ ˆ; 0
w

,1
( )

0 othe se
ˆ

rwi ,
k k

K K
k kk y k y

w w
D x y    

   


      (3) 

where wk is the weight on AU detector ( ) ˆ ,k kd x y  where  

k = 1, … , K.  The weights are iteratively determined by 
exploiting the performance of individual AU detectors over 

those training face images that are fully labelled with the 

expected presence of the target AU. Let ( , )i iS x y  
1 i N   be the training face image set, where xi is the face 

image, yi is the expected AU label of the image representing the 

presence or absence of the target AU, and N is the total number 
of training images. Initially, the weight wk is set to 1 for all K 

AU detectors. For each pair (xi, yi), the decisions of individual 

AU detectors are obtained and the combined decision ˆ iy  is 
determined by the weighted vote in (3). Then, the weights of 

the AU detectors that incorrectly assign a value different from 

the given expected value yi are decreased to ,kw   where 
[0,1).   As a result, the individual AU detectors that 

correctly detect the presence or absence of the target AU 

receive higher weightings. A detailed description on weighted 
majority voting can be found in [18].  

It is well known that the best performance of weighted 
majority vote–based fusion is bounded by some small constant 
fraction of the best performance among the individual AU 
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Fig. 2. Example of BKS look-up table built with results of three 
AU detectors on training face images set. 
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detectors. This can be a problem when the performance of the 
best AU detector is not satisfactory. Therefore, we employ a 
randomized weighted majority algorithm [18] to mitigate this 
dependence issue of the straightforward weighted majority 
voting algorithm. 

Our randomized weighted majority vote–based fusion 
method computes the fraction of the multiple AU detectors 
detecting the presence or absence of the target AU using their 
weights and determines the final decision by randomly 
predicting according to that fraction. The associated fusing 
function, Dr, can be formally described as follows: 

1; 1
r

ˆ
1 with probability ,

( )
0 otherwise

/
ˆ

,
k

K
kk y

w W
D x y  

  


  (4) 

where 
1; 1 1; 0ˆ ˆ

.
k k

K K
k kk y k y

W w w
   

    It is proven that 

the number of mistakes the randomized weighted majority 
vote–based fusion is going to make is halved due to the 
introduced randomization to the deterministic fusion in (5) [18].  

The last label-output fusion method adopts the behavior 
knowledge space (BKS) method and organizes the given 
knowledge on the empirical performance of multiple AU 
detectors on the training data. The BKS method constructs a 
look-up table consisting of cells, each of which corresponds to 
every possible combination of multiple AU detector outputs. 
Since only a binary classifier is considered for an individual 
AU detector, our BKS look-up table contains 2K cells. Each cell 
contains two numbers; that is, the total number of training face 
images assigned to the corresponding output combination and 
known to have the target AU or not, respectively. Intuitively, 
the BKS look-up table maintains the training data counts of 
every possible combination of individual decisions of multiple 
AU detectors and the combined final decision.  

Figure 2 illustrates an example of such a BKS look-up table, 
constructed with the detection results of three AU detectors on 
a training face image set. Since three AU detectors are used in 

the example, the BKS look-up table is composed of eight cells 
representing every possible output combination of three AU 
detectors (see the first column of the look-up table in Fig. 2). 
Then, each cell is filled by two numbers representing the total 
number of training samples detected as the corresponding 
output combination and originally labeled with the expected 
AU value y = 1 and y = 0, respectively.  

Once the look-up table is constructed, our BKS-based label-
output fusing function Dk determines the final decision given 
an unknown face image x by the following decision rule: 

1 2 1 2ˆ, , , , , ,
k

ˆ ˆ ˆ ˆ ˆ1 ( 1) ( 0),
( )

0 otherwise,
ˆ K Ky y y y y yc y c y

D x y
     


(5) 

where 
1 2 ˆ, ,ˆ ˆ , ( 1)

Ky y yc y   and 
1 2, , ,ˆ ˆ ˆ ( 0)

Ky y yc y  are the two 
counts stored in the cell 

1 2, ,ˆ ˆ ˆ, ,
Ky y yc   representing the number 

of training images labelled with the expected AU value y = 1  
and y = 0, respectively. For example, if an unknown image x is 
detected as 1 1 2 2 3 3( ) 1, ( ) 1ˆ0, )ˆ ˆ (d x y d x y d x y       by 
the three AU detectors in Fig. 2, then it is finally assigned to the 
AU value ˆ 1y   since 

1 2 3 1 2 3, ,ˆ ˆ ,ˆ ˆ ˆ,ˆ 1 3( ) ( )0 1y y y y y yc y c y      
according to the BKS look-up table in Fig. 2 and the decision 
rule in (5). Further details on the original BKS method can be 
found in [19]. 

B. Probability-Output Fusion 

The probability-output fusion method produces a combined 
decision that ranges in degree between 0 and 1. Since the 
outputs of the AU detection fusion are fed into the subsequent 
AU-to-emotion mapping, obtaining a dimensional value can be 
more suitable in terms of information loss. To this end, three 
probability-output fusion methods are proposed; the first two 
adapt the randomized weighted majority vote–based label-
output fusing function in (4) and the BKS-based decision rule 
in (5), respectively, and the last one adopts BNs to derive a 
probability estimate for the combined decision.  

First, our weight-based probability-output fusion method 
employs the probability obtained in the randomized weighted 
majority vote–based label-output fusion method defined in (4). 
Let wk be the weight on AU detector ( ) ˆk kd x y  for k = 1,  

… , K and 
; 1ˆ1 k

K
kk y

w
   be the total weight of AU detectors  

that detect the presence of the target AU (that is, ˆ 1ky  ). 
Then, the weight-based probability-output fusing function Dwp 
estimates the probability with which the target AU is present in 
an input face image x as follows: 

wp 1; ˆ 1
) ,ˆ( /

k

K
kk y

D x y w W
 

            (6) 

where 
1; 1 1;ˆ ˆ 0

.
k k

K K
k kk y k y

W w w
  

    

The second probability-output fusion method is derived from 
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Fig. 3. Structure and parameters of BN used by Dbn. 
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Our last probability-output fusion method employs BNs to 

represent the probabilistic relationship between the individual 

decisions of multiple AU detectors and the combined decision 

on the presence of the target AU. A BN is a directed acyclic 

graph that represents a joint probability distribution among a 

set of random variables [20]. Figure 3 shows the structure of  

the constructed BN and the parameters that need to be 

specified. The BN consists of a set of random variables 

representing the individual decisions of multiple AU detectors 

and the final decision of the fusing function and the conditional 

dependences among the variables. The BN-based probability-

output fusing function Dbn decides the probability of the 

presence of the target AU by calculating the conditional 

probability as follows: 
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 (8) 

The conditional probability distribution (CPD) for each node 
given its parents and the prior probability of parent node in (8) 
is the parameters of our BN. These parameters are estimated 
from the decisions of multiple AU detectors on the training 
face images and their original AU values representing the 
presence or absence of a target AU by maximizing the 

likelihood of the training data. Further details on BN learning 
and inference can be found in [20]. 

3. AU-to-Emotion Mapping 

AU-to-emotion mapping aims to infer a target emotion from 
detected AUs. Detected AUs are represented by either 
categorical or dimensional values depending on the AU fusion 
method. Therefore, the mapping method needs to deal with 
detected AUs represented by both categorical and dimensional 
values. We present three AU-to-emotion mapping methods to 
recognize an emotion displayed in an input face image.  

A. Rule-Based Mapping 

Several rules that classify facial actions into the basic 
emotion categories have been acquired in a straightforward 
manner from the linguistic descriptions of the prototypic facial 
expressions given by Ekman and Friesen [1]. A set of 
deterministic AU-to-emotion mapping rules is formulated from 
the emotion descriptions in terms of AUs present in [13] and 
[14], which is presented in Table 2.  

Although some rules deal with the degree of AU presence, 
most of them only consider whether the target AUs are present 
or not to map to emotions. Therefore, a rule-based mapping  
is suitable for inferring emotions from the combined AU 
detection obtained by the label-output fusion method in our 
two-phase facial emotion recognition framework.  

B. LCS-Based Mapping 

A heuristic rule-based mapping method can suffer from the 
noisy outputs of the preceding automatic AU detection and 
fusion. A more robust mapping that allows partial matching 
using the well-known LCS distance is recently proposed by 
Velusamy and others [16] and is employed for our AU-to-
emotion mapping. 

The LCS-based mapping method consists of two parts. First, 
 

Table 2. AU-to-emotion mapping rules. 

Emotion Description in terms of AUs 

Anger AU23 AU24 AU20    

Disgust (AU9 AU10) AU20    

Fear (AU1 AU2 AU4) AU20    

Joy (AU10 AU9) AU20     

Sadness 
(((AU1 AU4) AU6) AU15))

( AU9 AU10) AU20

   
   

 

Surprise 
 AU1 AU2 AU5 AU4

( AU9 AU10) AU20

    

    
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a set of discriminant AUs are determined per emotion using   
a concept called discriminant power [16]. The discriminant 
power of an AU for an emotion is defined as follows: 

   AU | AU |ij j i j iH P P   ,         (9) 

where (AU | )j i  is the probability of the action unit AUj’s 

presence given that the emotion i has occurred, and  

|(AU )j iP   is the probability of the action unit AUj’s 

presence given that the emotion i has not occurred. For each 

emotion, the top five highly discriminant AUs that have the 

largest positive discriminant power are selected as discriminant 

AUs of that emotion.  

Once the discriminant AUs are determined, the emotion to 

be recognized, in a new image, is determined by comparing the 

detected AUs (from the new image) and the predetermined 

discriminant AUs of every emotion by the LCS similarity 

measure and by choosing the emotion with the LCS as the 

answer. For example, suppose that the discriminant AUs of 

anger and happiness are determined as {AU2, AU4, AU7, 

AU17, AU23} and {AU1, AU5, AU6, AU12, AU26}, 

respectively, according to the discriminant power defined in (9). 

If the detected AUs are (AU1, AU6, AU7) for an input image, 

then it is now mapped to the emotion happiness, although 

some AUs, such as AU5, AU12, and AU26, are missing in the 

detected AUs and AU7 is not part of the discriminant AUs of 

happiness. Similar to the rule-based mapping, the LCS-based 

mapping takes a binary input and can thus only be paired with 

label-output fusion methods. 

C. Model-Based Mapping 

A model-based mapping method is proposed to deal with the 
dimensional outputs of our probability-output fusion methods. 
SVM is employed as the mathematical model that takes as an 
input the list of detected AUs presented in ranges between 0 
and 1 and classifies them into emotions. Six binary SVM 
classifiers are trained to model each of the six basic emotions 
and the outputs of the trained six SVM classifiers are 
transformed to an emotion probability using the softmax 
function to determine one single recognized emotion. 

Let  T1 2 6, , ,o o o   be the output vector of the six 

trained SVM classifiers given a list of combined decisions on 
the presence of all considered AUs, where oi is the distance of 
the given input from the decision hyperplane of the ith SVM 
classifier. Then, the recognized emotion ̂  is determined as 
follows:  

 6
1

{1,2, ,6}
argmaxˆ ./ ji

oo
j

i
e e 

 
            (10) 

IV. Experiments 

The performance of the proposed two-phase facial emotion 
recognition framework consisting of multiple AU detection, 
AU detection fusion, and AU-to-emotion mapping is evaluated 
over two widely used face databases labelled with true AUs 
and emotions.  

1. Database  

The Extended Cohn-Kanade (CK+) database [13] contains 
593 image sequences of posed and non-posed spontaneous 
expressions with frontal face. The final frame in each image 
sequence contains the emotion-specified facial expression at 
the apex state and is coded with 39 FACS AUs and 6 emotions. 
This dataset is widely used as a benchmark database to 
evaluate facial AU detection and emotion-specified facial 
expression recognition. 

The ISL Facial Expression Database (ISL) [17] consists of 
42 image sequences obtained from 10 subjects. The image 
sequences contain several posed facial expressions from 
neutral, through a series of onset, apex, and offset phases and 
back again to a neutral state with nearly frontal. Only the 
training portion of the database composed of 28 image 
sequences of 6 subjects is used in our experiments because 
they are coded with 16 FACS AUs, whereas the testing portion 
is coded with only 4 AUs. Furthermore, those face images 
where the target AU is present in low intensity are excluded, 
which results in 2,083 face image frames.  

2. Results of Multiple AU Detection and Fusion 

Three AU detectors are used for multiple AU detection. Two 
of them are trained individually from the CK+ and ISL 
databases and named CKD and ISLD, respectively. Each 
database is randomly partition into five folds, where four folds 
are used for the training and the remaining fold is left out for 
the validation. Of the 593 CK+ face images, 531 are used to 
train the CKD, and 1,666 out of the 2,083 face images are used 
for training the ISLD.  

From the training face images, frontal human faces with a 
head rotation of no more than 10 are first detected and the 
detected faces are then rescaled to the size of 64  64 pixels. A 
set of Gabor filters at eight orientations and seven spatial 
frequencies (2:16 pixels per cycle at 1/2 octave steps) are 
applied on each normalized face to extract a feature vector of 
64  64  56 dimensions. Given the facial feature vectors, 
AdaSVM [4] is then employed to detect a target AU present  
in the image features while simultaneously reducing the 
dimension of the feature vector. The AdaSVM employs 
Adaboost as the feature selection method and SVM as the  
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Table 3. AU detection results of individual AU detectors in terms of detection accuracy rate (unit: %). 

DB Detector AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU12 AU14 AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27

CKD 90.16 91.80 75.41 85.25 73.77 70.49 96.72 95.08 96.72 85.25 80.33 88.52 83.61 85.25 85.25 93.44 95.08

ISLD 72.13 75.41 62.30 70.49 75.41 62.30 80.33 73.77 N/A 65.57 67.21 N/A 83.61 85.25 68.85 95.08 77.05CK+ 

LAUD 68.85 73.77 65.57 70.49 67.21 75.41 80.33 93.44 96.72 90.16 N/A 88.52 N/A N/A 72.13 N/A 75.41

CKD 51.56 85.13 60.67 61.39 84.41 66.19 94.72 84.17 N/A 72.18 60.43 N/A 71.22 72.18 51.56 81.06 93.76

ISLD 100 99.52 99.52 98.32 98.56 99.52 100 100 N/A 97.60 99.28 N/A 97.84 99.04 99.52 79.38 83.33ISL 

LAUD 58.03 71.22 58.03 68.82 84.89 59.23 89.69 81.06 N/A 76.26 N/A N/A N/A N/A 39.09 N/A 82.73

 

 
weak classifier. 

Although the CK+ database is coded with 39 AUs, some 
AUs appear too infrequently. As stated in Section III-1, based 
on our detailed review on the linguistic description of emotions 
in terms of FACS AUs [13]–[14] and the occurring frequency 
of AUs in CK+ and ISL, we chose 17 AUs that are found to be 
relevant to the recognition of six basic emotions as in Table 1. 
Then, a single AdaSVM classifier is trained with the training 
portion of the CK+ database to detect the presence or absence 
of each of the 17 AUs and the resulting 17 AdaSVM classifiers 
compose the CKD. For the ISL database coded with 16 AUs, 
15 AUs except AU45 (that is, eye closed) that are overlapped 
with the chosen 17 AUs are finally selected. The ISLD detector 
consists of the 15 AdaSVM classifiers trained with the training 
portion of the ISL database.  

For the third AU detector, we employ a local binary pattern 
(LBP)–based detector named LAUD [7]. While the CKD and 
ISLD detectors use the well-known Gabor filter features, the 
LAUD detector exploits LBP features as the face description. 
The LBP features have been successfully applied to face 
recognition and have been recently extended to facial 
expression recognition [9]. The LAUD detector also adopts 
SVM as classifiers for AU detection and its implementation 
comes with 14 SVMs trained from the MMI Facial Expression 
Database [21]. Similarly, the AU45 detector of LAUD is 
excluded in our experiments, since AU45 (that is, blink) is 
irrelevant to emotion description. As a result, the LAUD 
detector used in the experiments consists of 13 LBP-based 
SVM classifiers.  

Table 3 shows the AU detection results of individual AU 
detectors on the CK+ and ISL databases in terms of detection 
accuracy rates. Since four folds of the two databases are used to 
train the CKD and ISLD detectors, the performance 
comparison of three AU detectors are conducted on the 
remaining one fold of data. The best AU detection performance 
among three AU detectors is marked bold in the table. As 
expected, all three AU detectors do not perform equally well 
for all the target AUs. For example, the CKD detector trained 

 
with the CK+ database performs better for most of the AUs of 
the CK+ database than the other two detectors. However, IDSL 
and LAUD perform better on some AUs (that is, AU6, AU23, 
AU26, AU7, and AU15) although they are obtained with 
totally different databases. On the ISL database, the ISLD 
detector detects better most of the AUs except a few AUs  
such as AU26 and AU27 where CKD performs better. These 
experimental results confirm our observation that a single AU 
detector does not perform equally well for all AUs. 

The individual decisions obtained by the three AU detectors 
are then combined with the proposed eight AU-detection 
fusion methods to finally determine the combined decision on 
the presence of a target AU. Table 4 shows the performance of 
the proposed label-output fusion methods on the CK+ and ISL 
databases. The detection accuracy rate is again used to evaluate 
the binary outputs of the label-output fusion methods. As 
expected, the fusion methods that exploit the a-priori 
information about the quality of individual AU detectors (Dw, 
Dr, and Dk) outperform the ones that treat the individual AU 
detectors with equal weights (Dm and Du). The performance of 
the weighted majority vote–based fusion is bounded by the 
best performance of the three individual AU detectors. Only  
a marginal improvement is obtained by the randomized 
weighted majority vote–based fusion on AU6 and AU23 in the 
CK+ database.  

To evaluate the probability outputs of the three probability-
output fusion methods, the log-loss function defined as 

1

1
log( ) (1 ) log(1ˆ ˆ ) ,

N i i i i
i

y y y y
N 

       where {0,1}iy   

is the true AU label and ( 1ˆ )i iy P y   is the probability 
estimate for N number of face images, is employed as an error 
metric. Note that the probability estimate ˆ iy  is bounded from 
the extremes (that is, 0 and 1) by a small value to prevent an 
infinite error. Table 5 shows the evaluation results on the three 
probability-output fusion methods in terms of the log loss. 
Overall the BKS-based (Dkp) and the BN-based (Dbn) fusion 
methods attain fewer detection errors than the weight-based 
fusion method (Dwp) over most of the AUs, which implies that 
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Table 4. Combined AU detection results of five label-output fusion methods in terms of detection accuracy rate (unit: %). 

DB Fusion AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU12 AU14 AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27

Dm 81.97 86.89 68.85 80.33 70.49 70.49 81.97 96.72 96.72 86.89 75.41 86.89 83.61 85.25 83.61 90.16 81.97

Du 60.66 72.13 65.57 65.57 67.21 73.77 80.33 86.89 96.72 90.16 72.13 90.16 83.61 85.25 62.30 98.36 75.41

Dw 90.16 91.80 75.41 85.25 73.77 70.49 96.72 95.08 96.72 85.25 80.33 88.52 83.61 85.25 85.25 93.44 95.08

Dr 90.16 91.80 75.41 81.97 75.41 70.49 96.72 95.08 96.72 85.25 80.33 88.52 85.25 85.25 85.25 93.44 95.08

CK+ 

Dk 90.16 91.80 75.41 85.25 73.77 70.49 96.72 95.08 96.72 85.25 80.33 88.52 83.61 85.25 85.25 93.44 95.08

Dm 89.21 92.57 87.05 84.65 84.89 69.54 94.72 87.29 N/A 80.10 78.18 N/A 81.53 78.42 61.15 64..75 93.56

Du 71.70 75.54 73.14 71.94 84.89 58.99 89.69 85.37 N/A 79.14 81.53 N/A 87.53 92.81 92.81 95.68 85.61

Dw 100 100 99.52 98.32 98.56 99.52 100 100 N/A 97.60 99.28 N/A 97.84 99.04 99.52 81.06 93.76

Dr 100 100 99.52 98.32 98.56 99.52 100 100 N/A 97.60 99.28 N/A 97.84 99.04 99.52 80.58 93.76

ISL 

Dk 100 100 99.52 98.32 98.56 99.52 100 100 N/A 97.60 99.28 N/A 97.84 99.04 99.52 97.84 93.76

 

Table 5. Combined AU detection results of three probability-output fusion methods in terms of log loss. 

DB Detector AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU12 AU14 AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27

Dwp 0.77 0.64 2.35 1.38 2.04 2.37 0.25 0.19 0.38 0.85 2.10 0.76 1.08 1.41 1.36 0.35 0.44

Dkp 0.36 0.37 1.02 0.74 1.23 1.35 0.17 0.17 0.21 0.62 0.96 0.55 0.77 0.83 0.64 0.30 0.27CK+ 

Dbn 0.74 0.45 1.13 0.81 0.69 1.06 0.18 0.27 0.25 0.60 0.76 0.71 0.54 0.64 0.76 0.09 0.46

Dwp 0.0001 0.0001 0.056 0.193 0.143 0.056 0.0005 0.0001 N/A 0.277 0.082 N/A 0.249 0.110 0.055 1.093 0.150

Dkp 0.004 0.005 0.022 0.086 0.051 0.029 0.0017 0.009 N/A 0.078 0.033 N/A 0.061 0.038 0.028 0.096 0.050ISL 

Dbn 0.0001 0.0002 0.030 0.100 0.050 0.034 0.0001 0.006 N/A 0.078 0.033 N/A 0.067 0.035 0.027 0.121 0.052

 

 
the former is more certain about the true presence of AUs.  

3. Results of Emotion Recognition 

In this section, we compare the emotion recognition ability 
of various combinations of proposed AU detection fusion and 
AU-to-emotion recognition methods. Emotion recognition is 
conducted over 309 face images from the CK+ database, 
which are fully labelled both for the AUs and the six basic 
emotions. Among the selected 309 face images, 248 images 
used for the training of the CKD detectors in the preceding AU 
detection fusion are again used to learn AU-to-emotion 
mappings and the rest are used for testing. 

The LCS-based and model-based AU-to-emotion mappings 
require training, unlike the rule-based mapping. In the LCS-
based mapping, a set of five discriminant AUs is first obtained 
for each of the six basic emotions from the training portion of 
CK+ database as in [17]. These are {AU23, AU24, AU17, 
AU4, AU7} for anger, {AU9, AU17, AU7, AU4, AU6} for 
disgust, {AU20, AU1, AU4, AU25, AU5} for fear, {AU12, 
AU6, AU25, AU26, AU14} for happiness, {AU15, AU17, 
AU1, AU4, AU7} for sadness, and {AU2, AU27, AU5, AU1, 
AU25} for surprise. In the model-based mapping, a binary 

 
SVM classifier with a radial basis function kernel is trained for 
each emotion and the outputs of six trained SVM classifiers are 
combined to finally determine the underlying emotions as in 
(10). The SVM parameters σ and C are determined by 3-fold 
cross-validation on the training data.  

Figure 4 shows the correct recognition rates obtained by our 
two-phase emotion recognition framework. The combination 
of BKS-based probability-output fusion (Dkp) and model-based 
AU-to-emotion mapping achieves the best emotion recognition 
rate (86.89%) among 13 different AU detection and AU-to-
emotion mapping combinations in our framework. This best 
performance is only 1.64% lower than the best performance 
obtained by the LCS-based emotion mapping over the human-
labelled AUs (88.52%); however, it is slightly better than the 
correct recognition rate (85.25%) obtained by the conventional 
rule-based AU-to-emotion mapping on the manually labelled 
AUs (see the leftmost group of bars labelled with “True” in  
Fig. 4).  

The emotion recognition using the combined decisions of the 
straightforward AU detection fusion methods that consider 
individual AU detectors with equal weights (that is, Dm and  
Du) attains the worst accuracy rates, which is even worse than  
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Fig. 4. Accuracy rates of emotion recognition. 
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Table 6. Confusion matrix of Dkp + model-based mapping. 

 Anger Disgust Fear Joy Sadness Surprise

Anger 66.7 0.0 0.0 0.0 22.2 11.1 

Disgust 0.0 100 0.0 0.0 0.0 0.0 

Fear 20.0 0.0 60.0 0.0 0.0 20.0 

Joy 0.0 0.0 0.0 100 0.0 0.0 

Sadness 0.0 0.0 40.0 0.0 60.0 0.0 

Surprise 0.0 0.0 0.0 5.9 0.0 94.1 

 

 
those of previous two-phase emotion recognition framework 
using a single AU detector (see the second to the leftmost 
group of bars labelled with “CKD” in Fig. 4). However, the 
label-output fusion methods that exploits the behaviors of 
multiple AU detectors (that is, Dw, Dr, and Dk) and the robust 
LCS-based AU-to-emotion mapping combinations as well as 
the probability-output fusion and the model-based AU-to-
emotion mapping pairs show improved recognition accuracy 
rates as shown in Fig. 4.  

In summary, the combination of probability-output fusion 
and model-based AU-to-emotion mapping method yield better 
recognition rates than the combination of label-output fusion  
or rule-based mapping methods. Also, the LCS-based AU-  
to-emotion mapping that allows partial template matching 
outperforms the rule-base mapping that allows only strict 
matching for the binary outputs of fusion methods.  

Table 6 shows the confusion matrix of the best emotion 
recognition result achieved by the combination of BKS-based 
probability-output fusion (Dkp) and model-based AU-to-
emotion mapping. The most recognized emotions are disgust 
and joy (that is, happiness). Fear is misclassified to anger 
(20%) and surprise (20%) with similar visual facial expressions 
and sadness is confused with fear (40%). From a further 

comparison against other state-of-the-art two-phase and one-
phase approaches, our two-phase method using multiple AU 
detectors outperformed the previous two-phase approach using 
a single AU detector and attained comparable emotion 
recognition rates over three emotions (that is, disgust, joy, and 
surprise) as compared with the state-of-the-art one-phase 
approaches. Unless temporal features are used, the 
performance difference between our method and the most up-
to-date one-phase approaches is not significant. 
 
V. Conclusion 

In this paper, we proposed a new two-phase facial emotion 
recognition framework consisting of multiple AU detection, 
AU detection fusion, and AU-to-emotion mapping. In our 
framework, the presence of AUs is detected by group decisions 
of multiple AU detectors and a target emotion is inferred  
from the combined AU detection decisions. The proposed 
framework is evaluated over two real-world face databases. 
The experimental results demonstrate the improved 
performance over the previous two-phase framework using a 
single AU detector in terms of both AU detection accuracy and 
correct emotion recognition rate. 
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