• Title/Summary/Keyword: Multiple Wireless Channels

Search Result 188, Processing Time 0.022 seconds

A Tree based Channel Assignment Protocol for Considering the Performance Anomaly in IEEE 802.11 Wireless Mesh Networks (IEEE 802.11 무선 메쉬 네트워크에서의 성능 이상 현상 고려를 위한 트리 기반 채널 할당 프로토콜)

  • Kim, Sok-Hyong;Kim, Dong-Wook;Suh, Young-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.341-345
    • /
    • 2010
  • WMN is one of efficient solutions to provide Internet services for users by forming wireless backbone networks with wireless links. The dominant technology for WMNs is the IEEE 802.11, which provides multi-channel and multi-rate capabilities. One of important issues in WMNs is the network capacity and it is essential to design a multi-channel protocol that leverages the network capacity. However, when wireless links that use different data rates operate on the common channel, the performance of high-rate links is severely degraded by the presence of the low-rate links, which is often referred as performance anomaly. In this paper, we propose a Tree-based Channel Assignment (TreeCA) protocol to mitigate the performance anomaly problem by distributing data rates over multiple channels. TreeCA performs channel assignments based on the tree WMN architecture to accommodate the Internet traffics efficiently. Parent nodes on the tree distribute their child nodes over multiple channels so that the performance anomaly is reduced. Through simulations, we observed that the proposed TreeCA outperforms the existing multi-channel protocols for WMNs.

Interdependent Data Allocation a Scheme over Multiple Wireless Broadcast Channels (다중 무선 방송채널에서 상호 관련 데이타 할당 방법)

  • Park, Sung-Wook;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.30-43
    • /
    • 2009
  • Broadcast in the wireless environment has drawn much attention because it is capable of sending data to clients regardless of the number of clients. Most previous researches have aimed at obtaining an independent data item in a minimum time. But, they have not been researched on simultaneously receiving dependent data items in a query. In addition, these papers have only researched allocation problem that have not been came out data items in a query in same time and different channels. The access probability of each data item based on query request probability have not been reflected. This paper proposes a new method of allocating data items and simultaneously minimizing average response time required in receiving all the dependent data items in a query. Our performance analysis shows that our proposed method gives better average response time over the existing methods.

Fair Scheduling for Throughput Improvement in Wireless Mesh Networks

  • Tran, Nguyen H.;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1310-1312
    • /
    • 2007
  • Throughput improvement problem in wireless mesh network can be alleviated by equipped mesh router with multiple radios tuned into orthogonal channels. However, some links on the same channel also can be activated concurrently if the Signal-to-Noise and Interference Ratio (SNIR) at their receiver endpoints is not lower than the threshold. We propose a greedy algorithm to investigate the problem of how to schedule a set of feasible transmission under physical interference model by using the spatial time-division multiple-access (STDMA) scheme. We also consider the fairness in scheduling to prevent some border nodes from starvation. We evaluate our algorithms through extensive simulation and the results show that our algorithms can achieve better aggregate throughput and fairness performance than 802.11 standard.

A performance analysis of Trellis Coded Modulation for OFDM systems in the Wireless Communications Environments (무선 통신 환경에서 OFDM 시스템을 위한 트렐리스 부호화 방식의 성능분석)

  • 황병대;임수환;오성근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In this paper, we propose a robust trellis coded OFDM(orthogonal frequency division multiplexing) system for wireless communications over frequency selective fading channels. Computer simulations show that the proposed system achieves the better frame error rate(FER) performance as compared with the conventional Space time coded OFDM system in the correlated channel with multiple transmitter antennas.

  • PDF

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.

Channel Heterogeneity Aware Channel Assignment for IEEE 802.11 Multi-Radio Multi-Rate Wireless Networks (IEEE 802.11 다중 라디오 다중 전송률 무선 네트워크를 위한 채널 이질성 인지 채널 할당)

  • Kim, Sok-Hyong;Kim, Dong-Wook;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.870-877
    • /
    • 2011
  • IEEE 802.11 devices are widely used, and terminals can be equipped with multiple IEEE 802.11 interfaces as low-cost IEEE 802.11 devices are deployed. The off-the-shelf IEEE 802.11 devices provide multiple channels and multiple data rates. In practical multi-channel networks, since there is channel heterogeneity which indicates that channels have different signal characteristics for the same node, channels should be efficiently assigned to improve network capacity. In addition, in multi-rate networks, low-rate links severely degrade the performance of high-rate links on the same channel, which is known as performance anomaly. Therefore, in this paper, we propose a heterogeneity aware channel assignment (HACA) algorithm that improves network performance by reflecting channel heterogeneity and performance anomaly. Through NS-2 simulations, we validate that the HACA algorithm shows improved performance compared with existing channel assignment algorithms that do not reflect channel heterogeneity.

A Formula Derivation of Channel Capacity Calculation in a MIMO System

  • Kabir, S.M.Humayun;Lee, Eun-Ju;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.182-184
    • /
    • 2009
  • In this letter, we derive a tight closed-form formula for an ergodic capacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple closed-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.

A Medium Access Control Protocol for Voice/Data Integrated Wireless CDMA Systems

  • Lim, In-Taek
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.52-60
    • /
    • 2001
  • In this paper, a medium access control protocol is proposed for integrated voice and data services in wireless local networks. Uplink channels for the proposed protocol are composed of time slots with multiple spreading codes per slot based on slotted code division multiple access (CDMA) systems. The proposed protocol uses spreading code sensing and reservation schemes. This protocol gives higher access priority to delay-sensitive voice traffic than to data traffic. The voice terminal reserves an available spreading code to transmit multiple voice packets during a talkspurt. On the other hand, the data terminal transmits a packet without making a reservation over one of the available spreading codes that are not used by voice terminals. In this protocol, voice packets do not come into collision with data packets. The numerical results show that this protocol can increase the system capacity for voice service by applying the reservation scheme. The performance for data traffic will decrease in the case of high voice traffic load because of its low access priority. But it shows that the data traffic performance can be increased in proportion to the number of spreading codes.

  • PDF

A Delayed Multiple Copy Retransmission Scheme for Data Communication in Wireless Networks

  • Niu, Zhisheng;Wu, Yi;Zhu, Jing
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.222-229
    • /
    • 2003
  • In this paper, we propose a delayed multiple copy retransmission (DMCR) scheme for data communication in wireless networks, by which multiple copies of a lost link layer frame are retransmitted one-by-one with a retransmission delay in between. The number of the copies gradually increases with the number of retransmissions. Furthermore, for implementation of the DMCR scheme in practical mobile communication system, we also propose a dynamic retransmission scheme by interleaving and a new round-robin scheduling algorithm. We compare our scheme with the previous non-delayed retransmission schemes on the performance of frame loss probability, channel capacity and total transmission time. Numerical results show that the DMCR scheme can achieve higher performance. The effect of the delay time on endto-end TCP throughput is investigated as well.