• Title/Summary/Keyword: Multiple Vehicle Control

Search Result 192, Processing Time 0.023 seconds

SLIP CONTROLLER DESIGN FOR TRACTION CONTROL SYSTEM

  • Jung, H.;Kwak, B.;Park, Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability even in extreme road conditions, under which average drivers may not control the car properly. Commercial TCSs use experiential methods such as lookup table and gain-scheduling to achieve proper performance under various road and vehicle conditions. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and to get a simple structure, the brake controller and the throttle controller are designed using Lyapunov redesign method and multiple sliding mode control respectively. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve the required acceleration performance. The proposed method is validated with simulations based on 15 DOF passenger car model.

  • PDF

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Practical Methodology of the Integrated Design and Power Control Unit for SHEV with Multiple Power Sources

  • Lee, Seongjun;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.353-360
    • /
    • 2016
  • Series hybrid electric vehicles (SHEVs) having multiple power sources such as an engine- generator (EnGen), a battery, and an ultra-capacitor require a power control unit with high power density and reliable control operation. However, manufacturing using separate individual power converters has the disadvantage of low power density and requires a large number of power and signal cable wires. It is also difficult to implement the optimal power distribution and fault management algorithm because of the communication delay between the units. In order to address these concerns, this approach presents a design methodology and a power control algorithm of an integrated power converter for the SHEVs powered by multiple power sources. In this work, the design methodology of the integrated power control unit (IPCU) is firstly elaborately described, and then efficient and reliable power distribution algorithms are proposed. The design works are verified with product-level and vehicle-level performance experiments on a 10-ton SHEV.

A Study on the Development Method of the Domestic New Generation Multiple Launcher Rocket System (국내 차기 다련장 로켓 개발방안에 대한 고찰)

  • Cho, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • Korean army currently considers the development of the advanced MLRS(Multiple Launcher Rocket System) as a new alternative, which responses on the renovation of the artillery and future battle field environment. Therefore, This study suggests that the development methods of MLRS based on the analysis of the future battle field environment, world wide development trends of the MLRS and operation states of the domestic MLRS. According to this study, the development methods of new generation MLRS should be included a 230/130mm combined launcher competible with conventional 227mm on the vehicle, advanced FCS(Fire Control System), GPS/INS integration navigation system, Pod of ammunitiom, ammunition carrring vehicle and guided rocket munitions, etc.

Sensor Network System to Operate Multiple Autonomous Transport Platform (다수의 무인운송플랫폼 운용을 위한 센서 네트워크 시스템)

  • Nam, Choon-Sung;Gim, Su-Hyeon;Lee, Suk-Han;Shin, Dong-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.706-712
    • /
    • 2012
  • This paper presents a sensor network and operation for multiple autonomous navigation platform and transport service. Multiple platform navigate with inside sensors and outside sensors while acquiring and process some useful information. Each platform communicates each other by navigational information through central main server. Efficient sensor network systems are considered for the scenario which some passengers call the service and the vehicle accomplish its transport service by transporting each caller to the destination by autonomous manners. In the scenario, all vehicles perform a role of sensor system to the central server and the server handles each information and integrate with faster procedure in the wireless 3G network.

Design and implementation of the MAC protocol for underwater vehicle network (수중 이동체 통신망을 위한 접속제어 프로토콜의 설계 및 구현)

  • 신동우;임용곤;김영길
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.180-188
    • /
    • 1997
  • This paper proposes a new efficient MAC(Media Access Control) protocol to establish the ultrasonic communication network for underwater vehicles, which ensures a certain level of maximum throughput regardless of the propagation delay of ultrasonic and allows fast data transmission through the multiple ultrasonic communication channel. A MAC protocol for underwater communication network that allows 'peer-to-peer' communication between a surface ship and multiple underwater systems is designed, and the proposed control protocol is implemented for its verification.

  • PDF

The Development of Driving Algorithm for an Unmanned Vehicle with Multiple-GPS's (다중 GPS를 이용한 무인자동차의 주행 알고리즘 개발)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • A navigation system is one of the important components of an unmanned ground vehicle (UGV). A GPS receiver collects data signals transmitted by (Earth orbiting) satellites. However, these data signals may contain many errors resulting misinformation and depending on one's position (environment), reception may be impossible. The proposed self-driven algorithm uses three low-cost GPS in order to minimize errors of existing inexpensive single GPS's driving algorithm. By using reliable final data, which is analyzed and combined from each of three GPS's received data signals, gathering a vehicle's steering performance information and its current pin-point position is improved even with error containing signals or from a place where signal gathering is impossible. The purpose of this thesis is to explain navigation system algorithm using multiple GPS and compass sensor and prove the algorithm through experiments.

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

Development of Multiple RLS and Actuator Performance Index-based Adaptive Actuator Fault-Tolerant Control and Detection Algorithms for Longitudinal Autonomous Driving (다중 순환 최소 자승 및 성능 지수 기반 종방향 자율주행을 위한 적응형 구동기 고장 허용 제어 및 탐지 알고리즘 개발)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.26-38
    • /
    • 2022
  • This paper proposes multiple RLS and actuator performance index-based adaptive actuator fault-tolerant control and detection algorithms for longitudinal autonomous driving. The proposed algorithm computes the desired acceleration using feedback law for longitudinal autonomous driving. When actuator fault or performance degradation exists, it is designed that the desired acceleration is adjusted with the calculated feedback gains based on multiple RLS and gradient descent method for fault-tolerant control. In order to define the performance index, the error between the desired and actual accelerations is used. The window-based weighted error standard deviation is computed with the design parameters. Fault level decision algorithm that can represent three fault levels such as normal, warning, emergency levels is proposed in this study. Performance evaluation under various driving scenarios with actuator fault was conducted based on co-simulation of Matlab/Simulink and commercial software (CarMaker).

Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model (Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적)

  • Park, Seong-Keun;Hwang, Jae-Pil;Rou, Kyung-Jin;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.863-870
    • /
    • 2008
  • In this paper, a new filtering scheme for vehicle tracking with distorted measurement is presented. This filtering scheme is essential for the implementation of the adaptive cruise control (ACC) system. The proposed method combines the IMM and the probabilistic fuzzy model and is named as the Fuzzy IMM (FIMM). The IMM is employed to recognize the intention of the preceding vehicle. The probabilistic furry model is introduced to compensate the distortion of the range sensor. Finally, a computer simulation is performed to illustrate the validity of the suggested algorithms.