• Title/Summary/Keyword: Multiple Robots

검색결과 272건 처리시간 0.025초

다수 이동로봇의 원격제어를 위한 Graphic Man-Machine Interface의 구현 (Implementation of a Graphic Man-Machine Interface for a Teleoperation of Multiple Mobile Robots)

  • 김한영;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.712-715
    • /
    • 1999
  • The goal of this paper is to provide a Graphic man-machine interface that can be used to control multiple robots simultaneously. The proposed GUI scheme gave emphasis on making multiple robots Perform the cooperative works, maintaining a given formation. It controls multiple robots in two different modes. : a group mode and a individual mode. In the group mode, a common goal position and formation are delivered to individual robots at the same time, and in the individual mode one robot is selected. o increase the efficiency of the interface, a time scheduler is provided. The experimental results are included.

  • PDF

포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발 (Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots)

  • 이병룡
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

다중 이동 로봇의 주행 계와 저가 GPS 데이터의 최적 융합을 통한 2차원 공간에서의 위치 추정 (Cooperative Localization in 2D for Multiple Mobile Robots by Optimal Fusion of Odometer and Inexpensive GPS data)

  • 조경환;이지홍;장철수
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.255-261
    • /
    • 2007
  • We propose a optimal fusion method for localization of multiple robots utilizing correlation between GPS on each robot in common workspace. Each mobile robot in group collects position data from each odometer and GPS receiver and shares the position data with other robots. Then each robot utilizes position data of other robot for obtaining more precise estimation of own position. Because GPS data errors in common workspace have a close correlation, they contribute to improve localization accuracy of all robots in group. In this paper, we simulate proposed optimal fusion method of odometer and GPS through virtual robots and position data.

  • PDF

유니사이클 로봇을 위한 지역최소점 탈출을 갖춘 포메이션 알고리즘 (Formation Algorithm with Local Minimum Escape for Unicycle Robots)

  • 정하민;김동헌
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.349-356
    • /
    • 2013
  • This paper presents formation control based on potential functions for unicycle robots. The unicycle robots move to formation position which is made from a reference point and neighboring robots. In the framework, a local minimum case occurred by combination of potential repulsed from neighboring robots and potential attracted from a formation line is presented, in which the robot escapes from a local minimum using a virtual escape point after recognizing trapped situation. As well, in the paper, potential functions are designed to keep the same distance between neighboring robots on a formation line, i.e. the relative distance between neighboring robots on a formation line is controlled by a potential function parameter. The simulation results show that the proposed approach can effectively construct straight line, V, and polygon formation for multiple robots.

영 공간 분해 방법을 이용한 다중 협동로봇의 모빌리티와 가속도 조작성 해석 (Analysis of Acceleration Bounds and Mobility for Multiple Robot Systems Based on Null Space Analysis Method)

  • 이필엽;전봉환;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.497-504
    • /
    • 2006
  • This paper presents a new technique that derives the dynamic acceleration bounds of multiple cooperating robot systems from given individual torque limits of robots. A set of linear algebraic homogeneous equation is derived from the dynamic equations of multiple robots with friction contacts. The mobility of the robot system is analyzed by the decomposition of the null space of the linear algebraic equation. The acceleration bounds of multiple robot systems are obtained from the joint torque constraints of robots by the medium of the decomposed null space. As the joint constraints of the robots are given in the infinite norm sense, the resultant acceleration bounds of the systems are described as polytopes. Several case studies are presented to validate the proposed method in this paper.

미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법 (GA-Fuzzy based Navigation of Multiple Mobile Robots in Unknown Dynamic Environments)

  • 조연;이홍규
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.114-120
    • /
    • 2017
  • The work present in this paper deals with a navigation problem for multiple mobile robots in unknown indoor environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. The environments simulated in this work are dynamic ones which contain not only static but also moving obstacles. In order to guide the robot to move along a collision-free path and reach the goal, this paper presented a navigation method based on fuzzy approach. Then genetic algorithms were applied to optimize the membership functions and rules of the fuzzy controller. The simulation results verified that the proposed method effectively addresses the mobile robot navigation problem.

유동적인 군집대형을 기반으로 하는 군집로봇의 경로 계획 (An Advanced Path Planning of Clustered Multiple Robots Based on Flexible Formation)

  • 위성길;딜샷사이토프;최경식;이석규
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1321-1330
    • /
    • 2012
  • This paper describes an advanced formation algorithm of clustered multiple robots for their navigation using flexible formation method for collision avoidance under static environment like narrow corridors. A group of clustered multiple robots finds the lowest path cost for navigation by changing its formation. The suggested flexible method of formation transforms the basic group of mobile robots into specific form when it is confronted by particular geographic feature. In addition, the proposed method suggests to choose a leader robot of the group for the obstacle avoidance and path planning. Firstly, the group of robots forms basic shapes such as triangle, square, pentagon and etc. depending on number of robots. Secondly, the closest to the target location robot is chosen as a leader robot. The chosen leader robot uses $A^*$ for reaching the goal location. The proposed approach improves autonomous formation characteristics and performance of all system.

Fuzzy Logic Based Navigation for Multiple Mobile Robots in Indoor Environments

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.305-314
    • /
    • 2015
  • The work presented in this paper deals with a navigation problem for multiple mobile robot system in unknown indoor environments. The environment is completely unknown for all the robots and the surrounding information should be detected by the proximity sensors installed on the robots' bodies. In order to guide all the robots to move along collision-free paths and reach the goal positions, a navigation method based on the combination of a set of primary strategies has been developed. The indoor environments usually contain convex and concave obstacles. In this work, a danger judgment strategy in accordance with the sensors' data is used for avoiding small convex obstacles or moving objects which include both dynamic obstacles and other robots. For big convex obstacles or concave ones, a wall following strategy is designed for dealing with these special situations. In this paper, a state memorizing strategy is also proposed for the "infinite repetition" or "dead cycle" situations. Finally, when there is no collision risk, the robots will be guided towards the targets according to a target positioning strategy. Most of these strategies are achieved by the means of fuzzy logic controllers and uniformly applied for every robot. The simulation experiments verified that the proposed method has a positive effectiveness for the navigation problem.

장애물이 있는 작업공간에서 신경최적화 회로망에 의한 다중 이동로봇트의 경로제어 (Collision-Free Trajectory Control for Multiple Mobile Robots in Obstacle-resident Workspace Based on Neural Optimization Networks)

  • 이지홍
    • 대한전기학회논문지
    • /
    • 제39권4호
    • /
    • pp.403-413
    • /
    • 1990
  • A collision free trajectory control for multiple mobile robots in obstacle-resident workspace is proposed. The proposed method is based on the concept of neural optimization network which has been applied to such problems which are too complex to be handled by traditional analytical methods, and gives good adaptibility for unpredictable environment. In this paper, the positions of the mobile robot are taken as the variables of the neural circuit and the differential equations are derived based on the performance index which is the weighted summation of the functions of the distances between the goal and current position of each robot, between each pair of robots and between the goal and current position of each robot, between each pair of robots and between obstacles and robots. Also is studied the problem of local minimum and of detour in large radius around obstacles, which is caused by inertia of mobile robots. To show the validity of the proposed method an example is illustrated by computer simulation, in which 6 mobile robots with mass and friction traverse in a workspace with 6 obstacles.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.