
ISSN 1975-8359(Print) / ISSN 2287-4364(Online)

The Transactions of the Korean Institute of Electrical Engineers Vol. 66, No. 1, pp. 114～120, 2017

http://doi.org/10.5370/KIEE.2017.66.1.114

114 Copyright ⓒ The Korean Institute of Electrical Engineers

 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법

GA-Fuzzy based Navigation of Multiple Mobile Robots in Unknown Dynamic 

Environments
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Abstract - The work present in this paper deals with a navigation problem for multiple mobile robots in unknown indoor 

environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots’ bodies 

must be used to detect information about the surroundings. The environments simulated in this work are dynamic ones which 

contain not only static but also moving obstacles. In order to guide the robot to move along a collision-free path and reach 

the goal, this paper presented a navigation method based on fuzzy approach. Then genetic algorithms were applied to optimize 

the membership functions and rules of the fuzzy controller. The simulation results verified that the proposed method 

effectively addresses the mobile robot navigation problem.
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1. Introduction

As an important branch subject of robotics, autonomic 

mobile robot technology has a long history and will be used 

widely in future. Mobile robots have vast application 

prospects in areas including space exploring, factory 

automation, mining, eliminating dangerous situation, military 

and service, which can economize the labor force to be 

engaged in other aspects. In these applications, the 

navigation problem of mobile robots is one of the most 

popular issues. Thus, how to detect the surrounding 

information and finding a safe path for the robot is the 

first condition of success. In an environment with obstacles, 

the navigation of a robot together with its path planning is 

to find the collision-free path from a starting location to a 

target location.

In the past few decades, several methods have been 

suggested to solve the navigation problem for mobile robot. 

Such as neural network [1], genetic algorithm [2], artificial 

vision method [3] and PID control [4] in static 

environment. The methods above are usually used in global 

path planning and hardly be used in real-time control. 

There are also many traditional methods designed for global 

path planning have also been extended to local path 

planning, such as potential field method [5], roadmap 

method [6] and rolling window method [7], etc.

The fuzzy logic for the navigation and obstacle avoidance 

problem of mobile robots has also been studied by 

researchers for years. In [8], researchers suggested a 

minimum hazard approach based on fuzzy logic controller, 

by which the goal-oriented robot can escape from the local 

minimum location during the navigation process in unknown 

environment. Nevertheless, the method mentioned in [9] is 

combined the fuzzy logic with simulated annealing. By this 

method, the mobile robot shows good performance in 

obstacle avoidance.

Navigation for multiple mobile robots is another 

important issue for researchers. Zhao [10] developed a new 

finite-time synchronized approach for multiple mobile robot 

formation control, based on a terminal sliding mode control 

principle and system synchronization theory. Zhong [11] 

established a new Velocity-Change-Space method that 

performs dynamic motion planning by analyzing changes in 

the speed and direction of the robot’s velocity. However, 

robots must measure the size, positions, and velocities of 

obstacles and other robots online. Most of above researches 

need a global perspective, such as central server, global 

image or part of environment information. Therefore, there 

is an increasing need to study the proposed problem in 

completely unknown environments. Otherwise, one of the 



Trans. KIEE. Vol. 66, No. 1, JAN, 2017

미지 동적 환경에서 다중 이동로봇의 GA-Fuzzy 기반 자율항법             115

most important questions is to establish high-efficiency 

membership functions and rules set of the fuzzy logic 

controller (FLC), which will influence the performance of 

the fuzzy inference. In this work we focus on the optimized 

fuzzy logic based navigation problem for multiple mobile 

robots in completely unknown dynamic environments. And 

the proposed fuzzy logic is evolved by Genetic Algorithm 

(GA).

The remainder of this paper is organized as follows: 

Section 2 presents the modeling of the robot and kinematic 

functions. Section 3 describes the navigation strategies and 

FLCs. Section 4 presents an optimization method for FLC by 

GA. In Section 5, we verify the effectiveness of the 

proposed method by simulation. Finally, conclusions and 

discussions are included in Section 6.

2. Problem formulation and working assumptions

The simulations in this work are mainly conducted with 

a classic wheeled mobile robot. This robot is supported by 

two DC motors, installed on the left and right wheels. 

Encoders on each wheel allow the robot to detect how far 

the wheel has traveled. Typically, a gyro sensor is also 

installed on the robot body; this sensor provides feedback 

information and can correct driving direction in practice. 

The structure of such a robot (with a circular shape) is 

shown in Fig. 1. In total, there are 16 proximity sensors 

(ultrasonic sensors) equably arranged around the robot body 

in equal intervals. The sensors, which are numbered from 

  to  , are used to measure distances between the robot 

and surrounding obstacles or other robots.

The data that defines a path element can be denoted as 

a series of coordinate values defining points. We use the 

generalized coordinates     to describe the 

configuration of every point. In this work, we assume that 

the robot moves on a flat surface; moreover, inertial effects 

are neglected. The robot is driven under conditions with no 

slippage; thus, it should follow the non-holonomic 

constraint as:

  .                           (1)

where  is the angle between the robot’s driving direction 

and x-axis.  is the distance between   and  , which 

respectively denote the center point between the two 

wheels, and the center of the robot. The kinematic 

functions of   can then be given as:











 




 




 

,               (2)

where   and   denote the corresponding linear velocities 

of the left and right wheels, respectively, and  denotes the 

distance between the two wheels.
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Fig. 1 Modeling of a wheel mobile robot

3. Fuzzy Logic Controllers

In order to drive the mobile robot real-timely in totally 

unknown environments, navigation is completely achieved in 

a reactive manner. The proposed approach here is based on 

fuzzy inference system and is inspired by human behaviors, 

which consists of danger judgment strategy and target 

positioning strategy.

3.1 Danger Judgment Strategy for Obstacle Avoidance

The “danger judgment strategy” developed here is used 

to avoid convex obstacles or dynamic ones. Firstly, at the 

start position, the robot moves ahead with the direction 

towards the target. Once the sensors installed on the robot 

body detect any objects (obstacles or other robots), this 

strategy is to be activated. It is obtained by means of a 

fuzzy logic controller (FLC1) and based on a set of rules 

which generated by human experience.

The sensors installed on the robot body are set to run 

once by every 0.1 second. Thus, in such a short time, we 

can simplify the relative velocity calculation as the following 

equation to obtain the acceptable approximate solutions:


 ≈∆


 



,                       (3)
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where 
  and 

  are the distance measured by the   

sensor at time   and  . Here, the time interval ∆  of   

and    is 0.1 second. We use the expected time of collision 

to denote the danger coefficient, that is:


  

 ╱
 .                         (4)

The smaller of the value of 
  is, the more dangerous 

the robot will be. Specially, when the robot moves away 

from the obstacles, the value of 
  is set as infinity. We 

denote that the danger coefficients of all the sensors are:

  
  ≤ ≤.                  (5)

Here, the angle of the corresponding   sensor with the 

minimum danger coefficient is judged as the most 

dangerous direction of coming obstacles, and will be firstly 

dealt with. The method used for avoiding this dangerous 

collision is achieved by a fuzzy logic controller which is 

named as FLC1 in this section. Here, the minimum danger 

coefficient and the angle of the corresponding sensor are 

taken as the input variables. Moreover, the linear velocity of 

left and right wheels will be the output variables. Then the 

input variables can be described as:

min ,                         (6)

 ∠ 
 min,            (7)

where ∘ ≤∠ ≤∘ . For the fuzzification process, 

the input and output variables can be divided into several 

linguistic terms as follow:

S: small; M: medium; B: big; VB: very big; 

RB: right back; R: right; RF: right front; F: front; 

LF: left front; L: left; LB: left back; B: back; 

Z: zero; NB: negative big; NM: negative medium; 

NS: negative small; PB: positive big;

PM: positive medium; PS: positive small.

The process that transforms non-fuzzy input values into 

fuzzy values is achieved using membership functions that 

provide fuzzy terms with a definite meaning. The degree of 

membership of a no-fuzzy input value to a certain fuzzy set 

represents the confidence, expressed as a number from 0 to 

1, that a particular value belongs to this fuzzy set [10]. In 

this work, we used the triangular membership functions. For 

the   linguistic term  , a triangular sharp can be defined 

by three points:  ,  and  , which means the left, 

center and right point. According to   together with the 

corresponding input  , the output value   can be 

described as the following equation:

 











   
  ≤ ≤

 

   
 ≤ ≤

 

.     (8)

The membership functions for input and output variables 

of FLC1 are as shown in Fig. 2. As shown in this figure, 

when the main risk comes from left side, angle  is 

positive, otherwise it is negative.
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Fig. 2 Membership functions for input and output variables 

of FLC

The fuzzy inference procedure usually contains a set of 

rules that are used to appoint the desired control behavior. 

A rules set is a condition description taking the form of “I

F…THEN…” rules. The rules set applied to FLC1 is shown 

in Table 1.

Table 1 Rules set for FLC1




RB R RF F LF L LB B



S PB PB NB NB NS PB PB PS

M PB PB NB NB PB PB PS PS

B PB PB NS Z PB PB PS PS

VB PB PB PS PS PB PB PS PS




RB R RF F LF L LB B



S PB PB NS NS NB PB PB PB

M PS PB PB Z NB PB PB PB

B PS PB PB PB NS PB PB PB

VB PS PB PB PB PS PB PB PB

3.2 Target Positioning Strategy

When there is no risk of collision, another strategy for 
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target positioning is to be active. The new FLC which the 

target orientation process is achieved by is denoted as 

FLC2.

The schematic model of target positioning is as given in 

Fig. 3. In this figure, with the current position  , the 

robot has moved over the obstacle  . With the angle   

between the line from the center of the robot to the target 

point and the x-axis, we denote that the angular difference 

is   . Now, the obstacle is moving far away from the 

robot and poses no risk to the robot. Thus, the strategy of 

FLC2 is come into use. This controller is used to drive the 

robot to point to the target position. In the other words, it 

is used to reduce the angular difference   which is one of 

the input variables of FLC2.
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Fig. 3 Scheme of target positioning

Another constraint for FLC2 is the distance   between 

the robot and its target, which is denoted with the multiple 

of robot’s radius in this paper. Moreover, the output 

variables also are the linear velocities of left and right 

wheels. Similar with FLC1, the triangular type of 

membership functions are used for both input and output 

variables of FLC2.

4. Optimized FLC by GA

The rules set and membership functions discussed in 

section 3 were created all by human experience, which will 

influence the performance of a FLC. Thus, it is 

indispensable to adjust them to get a better performance. A 

genetic algorithm is employed here to do this work. GA is a 

search strategy based on models of evolution in nature. The 

optimization procedure of GA requires several steps which 

can be achieved in accordance with the following order. 

Because there is not much value to optimize the parameters 

of FLC2, this paper will focus on the optimization of the 

fuzzy controller of obstacle avoidance.

4.1 Chromosomes and initialization

A chromosome corresponds to a possible solution of the 

optimization problem and every chromosome is composed of 

several encoded genes. In order to encode a FLC, we 

integrated the proposed encoding procedure with both the 

membership functions and rules set of FLC1. We use  , 

 ,  ,   to denote the linguistic values of input and 

output variables, where  is the number of corresponding 

linguistic values. For the triangular membership functions 

every linguistic value can be described by three points. But 

in particular, the linguistic values on both ends of every 

membership function are described by two points. Because 

the endpoints are fixed to the end by experience. Hence, 

we can encode the membership functions which with the 

length of 58 in the way as shown in Fig. 4. Number 1 to 5 

are used to encoding the linguistic values of the rules set. 

Thus, the rules set can be encoded as Table 2.

1,c 1,r 2,l 2,c 2,r 3,l 3,c 3,r 4c 4,r, , , , , , , , , ,A A A A A A A A A A

1,c 1,r 2,l 2,c 2,r 7,l 7,c 7,r 8c 8,r, , , , ,..., , , , , ,B B B B B B B B B B

1,c 1,r 2,l 2,c 2,r 4,l 4,c 4,r 5c 5,r, , , , ,..., , , , , ,C C C C C C C C C C

1,c 1,r 2,l 2,c 2,r 4,l 4,c 4,r 5c 5,r, , , , ,..., , , , ,D D D D D D D D D D

10bit
+

+

+

22bit

13bit

13bit

+

+

+

Fig. 4 Encoding for membership functions

Table 2 Encoding for membership functions of FLC1




RB R RF F LF L LB B



S 5 5 1 1 2 5 5 4

M 5 5 5 5 5 5 4 4

B 5 5 2 3 5 5 4 4

VB 5 5 4 4 5 5 4 4




RB R RF F LF L LB B



S 5 5 2 2 1 5 5 5

M 4 5 5 3 1 5 5 5

B 4 5 5 5 2 5 5 5

VB 4 5 5 5 4 5 5 5

GAs are efficient techniques for searching for global 

optimum solutions but may have premature convergence 

problems [12]. In our case, the number of original 

individuals of the first generation is initialized as 30. In 

order to improve the convergence rate of GA and avoid the 

premature convergence, we added three same individuals 

which generated by the input and out values and rules set 

discussed in the previous section. The rest 27 individuals 

are produced randomly with real number coding format.
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fitness values
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Fig. 6 Optimized membership functions of FLC1

Table 3 Evolved fuzzy rules set of FLC1




RB R RF F LF L LB B



S PB PS NB NB NS PS PS PS

M RB PB NB NB PB PB PB NS

B PB PB NS Z PB PB PS PS

VB PB PB PB PS PB PB PB PB




RB R RF F LF L LB B



S PB PS NS NB NB PB PB PB

M RS PB PB NB NB PB PB PB

B PS PB PB PB NB PB NB NS

VB PS PB PB PB PB Z Z NS

4.2 Fitness functions

In our case, a feasible fitness function should include two 

elements, that is, efficiency and security. Thus, for the   

individual, the running time   of the process from the start 

location to target location, the total path length   and the 

distance   between the robot body and the surrounding 

obstacles should be taken into account. The path length can 

be described by the following equation:

  


 

×                        (9)

A penalty function is required to insure that the robot 

will not collision any obstacles. Denote that   is the safety 

distance, the penalty function can be designed as:

    ≤
  

                         (10)

Then the fitness function can be written as:

   


                 (11)

where  ,  ,   are weighting coefficients.

4.3 GA operators

In the proposed algorithm, we used three traditional GA 

operators: selection, crossover and mutation. Here the 

‘Stochastic Universal Sampling’ (SUS) is used as the selection 

operator. At each generation, all the chromosomes are be 

updated based upon their fitness values. In other words, if a 

particular chromosome has better fitness than other 

chromosomes, then that particular chromosome is more likely 

to win the competition and clone itself. In addition, the 

‘Double-Point Crossover’ operator and ‘Real- valued Mutation’ 

operator were used for crossover and mutation procedure in 

this work.

4.4 Optimization results

By following the above steps, now we can implement the 

optimization procedure. The optimization environments of 

robot moving space are same as the environments shown in 

Fig. 7, which contains one mobile robot, one static and five 

dynamic obstacles. Several essential parameters are defined 

as: crossover rate is 0.9, mutation rate is 0.01 and maximum 

generation is 500. Therefore, through the evolution, we can 

get the curve of the maximum and average fitness values in 

every generation as shown in Fig. 5. The optimized 

membership functions are shown in Fig. 6. Table 3 describes 

the evolved rules set from Table 1. It's important to note that 

when the optimized membership functions and rules set are 

applied to simulations, both of them must be applied 

simultaneously, because the optimized parameters of FLC are 

evolved together by every generation.
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5. Simulation Results

In order to verify the effectiveness of the algorithm we 

have discussed, a series of simulations have been implemented 

with Matlab. The robot will move on a horizontal plane with 

the size of  unit-length and the accelerated speed won’t be 

considered. The results of one robot in the environments with 

1 static and 5 dynamic obstacles are shown in Fig. 7. The 

dotted line denotes the trajectories of dynamic obstacles. 

Here, the dynamic obstacles, which with different radius, 

speed   and moving directions, will continue moving back and 

forth during the entire process.

Compare the paths generated by evolved and un-evolved 

FLC1, we can find that the path length was decreased at 

7.84%, while the running time was decreased at 13.80%.

Otherwise, the results of the navigation of multiple 

mobile robots in the environments with 2 static and 4 

dynamic obstacles are shown in Fig. 8. In this situation, all 

the robots use the same navigation strategies and the same 

optimized FLC1 identically. Compare the paths generated by 

evolved and un-evolved FLC1, we can find that the path 

length of three robots was respectively decreased at -2.47%, 

17.02%, 36.06%, and the running time was decreased at 

5.00%, 34.13%, 47.95%. 

Start Start

End End

Fig. 7 The path of one robot before (left) and after (right) 

evolution.
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Fig. 8 The path of multiple robots before (left) and after 

(right) evolution.

6. Conclusions

This paper studied a navigation problem for multiple 

mobile robots in unknown dynamic environment using 

optimized fuzzy logic controller. The information of 

environment and the distance between the robot body and 

surrounding obstacles were detected all by the robot’s own 

sensors. The genetic algorithm was used to optimize the 

membership functions and rules set of FLC. The simulation 

results showed that the FLCs have excellent performance in 

path planning and obstacle avoidance process. Compare the 

paths generated by the optimized and un-optimized fuzzy 

controller the running time of the navigation procedure was 

observably decreased.

In this paper, the dynamic obstacles move under preset 

trajectories, to perform the simulation in the environment 

with randomly moving obstacles will be a rewarding 

challenge for the future work. In addition, all the obstacles 

in this work are simulated as roundness, thus, in the future 

we will extend our experiment to the environment with 

dynamic irregular obstacles.
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