• Title/Summary/Keyword: Multiple Robots

Search Result 275, Processing Time 0.034 seconds

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition (행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석)

  • 이지홍;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

Comprehensive architecture for intelligent adaptive interface in the field of single-human multiple-robot interaction

  • Ilbeygi, Mahdi;Kangavari, Mohammad Reza
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.483-498
    • /
    • 2018
  • Nowadays, with progresses in robotic science, the design and implementation of a mechanism for human-robot interaction with a low workload is inevitable. One notable challenge in this field is the interaction between a single human and a group of robots. Therefore, we propose a new comprehensive framework for single-human multiple-robot remote interaction that can form an efficient intelligent adaptive interaction (IAI). Our interaction system can thoroughly adapt itself to changes in interaction context and user states. Some advantages of our devised IAI framework are lower workload, higher level of situation awareness, and efficient interaction. In this paper, we introduce a new IAI architecture as our comprehensive mechanism. In order to practically examine the architecture, we implemented our proposed IAI to control a group of unmanned aerial vehicles (UAVs) under different scenarios. The results show that our devised IAI framework can effectively reduce human workload and the level of situation awareness, and concurrently foster the mission completion percentage of the UAVs.

A Study on the Application of Spatial-Knowledge-Tags using Human Motion in Intelligent Space

  • Jin, Tae-Seok;Morioka, Kazuyuki;Niitsuma, Mihoko;Sasaki, Takeshi;Hashimoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.31-36
    • /
    • 2005
  • Intelligent Space (iSpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment comes to have intelligence. In iSpace, the locations of multiple humans and other objects are obtained and tracked by using multiple camera and color-based method. In addition, we describe a context-aware information system which is based on Spatial-Knowledge-Tags (SKT). SKT system enables humans to access information and data by using spatial location of human and stored information in storage. The proposed tracking method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Enhancement of Complex Potential Navigation Method for Obstacle Avoidance of Mobile Robot (이동로봇의 장애물 회피를 위한 복소 포텐셜 항법의 개선)

  • Kim, Dong-Han;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.385-389
    • /
    • 2009
  • This paper deals with the enhancement of the complex potential navigation for wheeled mobile robots. The circle theorem from complex function theory is used to avoid an obstacle, and the enhancement to avoid multiple obstacles is proposed. The limit cycle navigation can be combined for robot to kick the ball to the intentioned direction. Avoiding step and superposing twin vortices can be applied to adjust the direction of robot's trajectory. The proposed method is verified through a set of simulation works, and the feasibilities for the enhancement of complex potential theory are successful.

Localization of a Mobile Robot Using Multiple Ceiling Lights (여러 개의 조명등을 이용한 이동 로봇의 위치 추정)

  • Han, Yeon-Ju;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 2013
  • We propose a new global positioning method for the indoor mobile robots. The multiple indoor lights fixed in ceiling are used as the landmarks of positioning system. The ceiling images are acquired by the fisheye lens camera mounted on the moving robot. The position and orientation of the lights are extracted by binarization and labeling techniques. Also the boundary lines between ceiling and walls are extracted to identify the order of each light. The robot position is then calculated from the extracted position and known position of the lights. The proposed system can increase the accuracy and reduce the computation time comparing with the other positioning methods using natural landmark. Experimental results are presented to show the performance of the method.

PJ Link-based remote control system for Multiple robots (PJ Link 기반 다중 로봇 원격조종 시스템)

  • Kim, Sang-Min;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.319-320
    • /
    • 2022
  • 본 논문에서는 내부 네트워크를 사용하여 여러 로봇들을 동시에 혹은 각각 제어할 수 있는 시스템을 제안한다. 이 시스템은 모바일, 데스크탑을 통해 원하는 로봇들을 다중 제어하고, 나아가서는 PJ link를 통한 프로젝터 제어, WOL을 통한 데스크탑 제어, 아두이노 레오나르도를 통한 키보드, 마우스 제어 등 여러 통합 컨트롤 시스템을 구축할 수 있다. 와이파이를 통한 시리얼 통신으로 esp8266과 컨트롤 pc 간의 통신이 이루어지고, I2C 통신을 통해 esp8266에서 레오나르도로 신호를 주어 다른 pc를 제어할 수 있다. 로봇의 경우에는 esp8266을 통해 직접적으로 제어가 가능하며 원하는 개수의 로봇을 동시에 혹은 각각 제어할 수 있다. 이러한 통합 컨트롤 시스템을 통해 여러 기기의 로봇을 보다 수월하게 제어가능하며 로봇뿐만 아니라 여러가지 기기들을 한번에, 수월하게 컨트롤 할 수 있게 된다.

  • PDF

A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method (부분시스템 합성방법을 이용한 심해저 통합 채광시스템의 효율적인 유연 다물체 동역학 모델링 연구)

  • Yun, Hong-Seon;Kim, Sung-Soo;Lee, Chang Ho;Kim, Hyung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1213-1220
    • /
    • 2015
  • A deep seabed integrated mining system consists of a mining vessel, a lifting pipe, a buffer station, a flexible pipe, and a mining robot for collecting manganese nodules. Recently, the concept of multiple mining robots was introduced to enhance to mining productivity. In this paper, the subsystem synthesis method was applied to the deep seabed integrated mining system in order to improve the efficiency of system analysis and to facilitate its extension to the system of multiple mining robots. Large deflections of the lifting and flexible pipe were considered by dividing a flexible pipe into several substructures, and applying flexible multibody dynamics to each substructure. Theoretical study has been carried out for the efficiency of the subsystem synthesis method for the integrated mining system, by comparing the arithmetic operational counts of the subsystem synthesis method with those of the conventional method.

An A2CL Algorithm based on Information Optimization Strategy for MMRS

  • Dong, Qianhui;Li, Yibing;Sun, Qian;Tian, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1603-1623
    • /
    • 2020
  • Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.