• Title/Summary/Keyword: Multiple Robotics Systems

Search Result 510, Processing Time 0.031 seconds

Design of a bluetooth-based interactive control network

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.922-925
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connection of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments. The bluetooth system supports both point-to-point connection and point-to-multipoint connections. In point-to-multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There is one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The Bluetooth standard has been suggested that Bluetooth equipments can be used in the short-range, maximum 100 meters . It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

  • PDF

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF

Design of a Compact Laparoscopic Assistant Robot;KaLAR

  • Lee, Yun-Ju;Kim, Jona-Than;Ko, Seong-Young;Lee, Woo-Jung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2648-2653
    • /
    • 2003
  • This paper describes the development of a 3-DOF laparoscopic assistant robot system with motor-controlled bending and zooming mechanisms using the voice command motion control and auto-tracking control. The system is designed with two major criteria: safety and adaptability. To satisfy the safety criteria we designed the robot with optimized range of motion. For adaptability, the robot is designed with compact size to minimize interference with the staffs in the operating room. The required external motions were replaced by the bending mechanism within the abdomen using flexible laparoscope. The zooming of the robot is achieved through in and out motion at the port where the laparoscope is inserted. The robot is attachable to the bedside using a conventional laparoscope holder with multiple DOF joints and is compact enough for hand-carry. The voice-controlled command input and auto-tracking control is expected to enhance the overall performance of the system while reducing the control load imposed on the surgeon during a laparoscopic surgery. The proposed system is expected to have sufficient safety features and an easy-to-use interface to enhance the overall performance of current laparoscopy.

  • PDF

Automated Protein-Expression Profiling System using Crude Protein Direct Blotting Method

  • Kobayashi, Hironori;Torikoshi, Yasuhiro;Kawasaki, Yuko;Ishihara, Hideki;Mizumoto, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2356-2361
    • /
    • 2003
  • Proteome research in the medical field is expected to accelerate the understanding of disease mechanism, and to create new diagnostic concept. For protein profiling, this paper proposes a new methodology named CPDIB (Crude Protein Direct Blotting). In the CPDIB procedure, crude protein sample is directly immobilized on a membrane and the expression of protein molecules in the sample are analyzed quantitatively by using a special device called ImmobiChip, where the membrane is used as a field of the immune reaction. The over-all structure of the ImmobiChip is based on the conventional Slot blot device. Mechanical improvement in the air-tightness of the case holding the membrane realizes the direct blotting and results in high performance of stability in the immune reaction. In the measurement of multiple proteins, a dispensing robot is used for increasing the efficiency of handling of liquid. Cooperation of the dispensing robot with the ImmobiChip for immobilizing proteins realizes automated and stable performance of the CPDIB procedure. This paper shows the evaluation of the air-tightness of the ImmobiChip, the ability of analyzing proteins using the CPDIB procedure and the performance of the automated equipment.

  • PDF

A Study of the 3D Unmanned Remote Surveying for the Curved Semi-Shield Tunneling

  • Lee, Jin-Yi;Jun, Jong-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1791-1796
    • /
    • 2005
  • Semi-shield tunneling is one of the propulsion construction methods used to lay pipes underground between two pits named 'entrance' and 'destination', respectively. Usually a simple composition, such as 'a fiducial target at the entrance+a total station (TS)+a target on the machine', is used to confirm the planned course. However, unavoidable curved sections are present in small-sized pipe lines, which are laid after implementation of a road system, for public works such as waterworks, sewer, electrical power, and gas and communication networks. Therefore, if the planned course has a curved section, it is difficult to survey the course with the abovementioned simple composition. This difficulty could be solved by using the multiple total stations (MTS), which attaches the cross type linear LED target to oneself. The MTS are disposed to where each TS can detect the LED target at the other TS or the base point or the machine. And the accurate relative positions between each MTS and target are calculated from measured data. This research proposes the relative and absolute coordinate calculation algorithm by using three MTS to measure a curved course with 20m curvature at 30m maximum distance, and verifies the algorithm experimentally.

  • PDF

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

Goal-driven Optimization Strategy for Energy and Performance-Aware Data Centers for Cloud-Based Wind Farm CMS

  • Elijorde, Frank;Kim, Sungho;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1362-1376
    • /
    • 2016
  • A cloud computing system can be characterized by the provision of resources in the form of services to third parties on a leased, usage-based basis, as well as the private infrastructures maintained and utilized by individual organizations. To attain the desired reliability and energy efficiency in a cloud data center, trade-offs need to be carried out between system performance and power consumption. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. The work presented in this paper is directed towards the development of an Energy-efficient and Performance-aware Cloud System equipped with strategies for dynamic switching of optimization approach. Moreover, a platform is also provided for the deployment of a Wind Farm CMS (Condition Monitoring System) which allows ubiquitous access. Due to the geographically-dispersed nature of wind farms, the CMS can take advantage of the cloud's highly scalable architecture in order to keep a reliable and efficient operation capable of handling multiple simultaneous users and huge amount of monitoring data. Using the proposed cloud architecture, a Wind Farm CMS is deployed in a virtual platform to monitor and evaluate the aging conditions of the turbine's major components in concurrent, yet isolated working environments.

A Fuzzy Controller for Obstacle Avoidance Robots and Lower Complexity Lookup-Table Sharing Method Applicable to Real-time Control Systems (이동 로봇의 장애물회피를 위한 퍼지제어기와 실시간 제어시스템 적용을 위한 저(低)복잡도 검색테이블 공유기법)

  • Kim, Jin-Wook;Kim, Yoon-Gu;An, Jin-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.60-69
    • /
    • 2010
  • Lookup-Table (LUT) based fuzzy controller for obstacle avoidance enhances operations faster in multiple obstacles environment. An LUT based fuzzy controller with Positive/Negative (P/N) fuzzy rule base consisting of 18 rules was introduced in our paper$^1$ and this paper shows a 50-rule P/N fuzzy controller for enhancing performance in obstacle avoidance. As a rule, the more rules are necessary, the more buffers are required. This paper suggests LUT sharing method in order to reduce LUT buffer size without significant degradation of performance. The LUT sharing method makes buffer size independent of the whole fuzzy system's complexity. Simulation using MSRDS(MicroSoft Robotics Developer Studio) evaluates the proposed method, and in order to investigate its performance, experiments are carried out to Pioneer P3-DX in the LabVIEW environment. The simulation and experiments show little difference between the fully valued LUT-based method and the LUT sharing method in operation times. On the other hand, LUT sharing method reduced its buffer size by about 95% of full valued LUT-based design.