• Title/Summary/Keyword: Multiple Responses Approach

Search Result 94, Processing Time 0.026 seconds

Using the Maximin Criterion in Process Capability Function Approach to Multiple Response Surface Optimization (다중반응표면최적화를 위한 공정능력함수법에서 최소치최대화 기준의 활용에 관한 연구)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • Response surface methodology (RSM) is a group of statistical modeling and optimization methods to improve the quality of design systematically in the quality engineering field. Its final goal is to identify the optimal setting of input variables optimizing a response. RSM is a kind of knowledge management tool since it studies a manufacturing or service process and extracts an important knowledge about it. In a real problem of RSM, it is a quite frequent situation that considers multiple responses simultaneously. To date, many approaches are proposed for solving (i.e., optimizing) a multi-response problem: process capability function approach, desirability function approach, loss function approach, and so on. The process capability function approach first estimates the mean and standard deviation models of each response. Then, it derives an individual process capability function for each response. The overall process capability function is obtained by aggregating the individual process capability function. The optimal setting is given by maximizing the overall process capability function. The existing process capability function methods usually use the arithmetic mean or geometric mean as an aggregation operator. However, these operators do not guarantee the Pareto optimality of their solution. Moreover, they may bring out an unacceptable result in terms of individual process capability function values. In this paper, we propose a maximin-based process capability function method which uses a maximin criterion as an aggregation operator. The proposed method is illustrated through a well-known multiresponse problem.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Multiresponse Optimization: A Literature Review and Research Opportunities (다중반응표면최적화 : 현황 및 향후 연구방향)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.3
    • /
    • pp.377-390
    • /
    • 2011
  • A common problem encountered in product or process design is the selection of optimal parameter levels which involves simultaneous consideration of multiple response variables. This is called a multiresponse problem. A multiresponse problem is solved through three major stages: data collection, model building, and optimization. Up to date, various methods have been proposed for the optimization, including the desirability function approach and loss function approach. In this paper, the existing studies in multiresponse optimization are reviewed and a future research direction is then proposed.

Combined Correlation Methods for Multipopulation Metamodel (다분포 대형 시뮬레이션 모형에 대한 결합상관방법)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • This research develops two variance reduction methods for estimating the parameters of the experimental simulation model having multiple design points based on an approach focusing on reduction of the variances of the mean responses across multiple design points. The first method extends a combined approach of antithetic variates and control variates for a single design point to the multipopulation context with independent streams across the design points. The second method extends the same strategy in conjunction with the Schruben-Margolin method for improving the first method. We illustrate an example for implementing the second method. We expect these two approaches may improve the estimation of the parameters of interest compared with the control variates method.

  • PDF

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.

An Integrated Modeling Approach for Predicting Potential Epidemics of Bacterial Blossom Blight in Kiwifruit under Climate Change

  • Kim, Kwang-Hyung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.459-472
    • /
    • 2019
  • The increasing variation in climatic conditions under climate change directly influences plant-microbe interactions. To account for as many variables as possible that may play critical roles in such interactions, the use of an integrated modeling approach is necessary. Here, we report for the first time a local impact assessment and adaptation study of future epidemics of kiwifruit bacterial blossom blight (KBB) in Jeonnam province, Korea, using an integrated modeling approach. This study included a series of models that integrated both the phenological responses of kiwifruit and the epidemiological responses of KBB to climatic factors with a 1 km resolution, under the RCP8.5 climate change scenario. Our results indicate that the area suitable for kiwifruit cultivation in Jeonnam province will increase and that the flowering date of kiwifruit will occur increasingly earlier, mainly due to the warming climate. Future epidemics of KBB during the predicted flowering periods were estimated using the Pss-KBB Risk Model over the predicted suitable cultivation regions, and we found location-specific, periodic outbreaks of KBB in the province through 2100. Here, we further suggest a potential, scientifically-informed, long-term adaptation strategy using a cultivar of kiwifruit with a different maturity period to relieve the pressures of future KBB risk. Our results clearly show one of the possible options for a local impact assessment and adaptation study using multiple models in an integrated way.

Brand Personality of Global Automakers through Text Mining

  • Kim, Sungkuk
    • Journal of Korea Trade
    • /
    • v.25 no.2
    • /
    • pp.22-45
    • /
    • 2021
  • Purpose - This study aims to identify new attributes by analyzing reviews conducted by global automaker customers and to examine the influence of these attributes on satisfaction ratings in the U.S. automobile sales market. The present study used J.D. Power for customer responses, which is the largest online review site in the USA. Design/methodology - Automobile customer reviews are valid data available to analyze the brand personality of the automaker. This study collected 2,998 survey responses from automobile companies in the U.S. automobile sales market. Keyword analysis, topic modeling, and the multiple regression analysis were used to analyze the data. Findings - Using topic modeling, the author analyzed 2,998 responses of the U.S. automobile brands. As a result, Topic 1 (Competence), Topic 5 (Sincerity), and Topic 6 (Prestige) attributes had positive effects, and Topic 2 (Sophistication) had a negative effect on overall customer responses. Topic 4 (Conspicuousness) did not have any statistical effect on this research. Topic 1, Topic 5, and Topic 6 factors also show the importance of buying factors. This present study has contributed to identifying a new attribute, personality. These findings will help global automakers better understand the impacts of Topic 1, Topic 5, and Topic 6 on purchasing a car. Originality/value - Contrary to a traditional approach to brand analysis using questionnaire survey methods, this study analyzed customer reviews using text mining. This study is timely research since a big data analysis is employed in order to identify direct responses to customers in the future.

Enhancing Multiple Steady-State Visual Evoked Potential Responses Using Dual-frequency tACS (이중 주파수 tACS를 이용한 안정상태 시각 유발 전위 반응 향상)

  • Jeonghui Kim;Sang-Su Kim;Young-Jin Jung;Do-Won Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI) is one of the promising systems that can serve as an alternative input device due to its stable and fast performance. However, one of the major bottlenecks is that some individuals exhibit no or very low SSVEP responses to flickering stimulation, known as SSVEP illiteracy, resulting in low performance on SSVEP-BCIs. However, a lengthy duration is required to enhance multiple SSVEP responses using traditional single-frequency transcranial alternating current stimulation (tACS). This research proposes a novel approach using dual-frequency tACS (df-tACS) to potentially enhance SSVEP by targeting the two frequencies with the lowest signal-to-noise ratio (SNR) for each participant. Seven participants (five males, average age: 24.42) were exposed to flickering checkerboard stimuli at six frequencies to determine the weakest SNR frequencies. These frequencies were then simultaneously stimulated using df-tACS for 20 minutes, and the experiment was repeated to evaluate changes in SSVEP responses. The results showed that df-tACS effectively enhances the SNR at each targeted frequency, suggesting it can selectively improve target frequency responses. The study supports df-tACS as a more efficient solution for SSVEP illiteracy, proposing further exploration into multi-frequency tACS that could stimulate more than two frequencies, thereby expanding the potential of SSVEP-BCIs.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.