• Title/Summary/Keyword: Multiple Models

Search Result 2,456, Processing Time 0.026 seconds

Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (I) - Multiple Linear Regression Models - (근적외선을 이용한 사과의 당도예측 (I) - 다중회귀모델 -)

  • ;W. R. Hruschka;J. A. Abbott;;B. S. Park
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-570
    • /
    • 1998
  • The MLR(Multiple Linear Regression) models to estimate soluble solids content non-destructively were presented to make a selection of optimal photosensor utilized to measure the soluble solids content of apples. Visible and NIR absorbance in the 400 to 2498 nanometer(nm) wavelength region, soluble solids content(sugar content), hardness, and weight were measured for 400 apples(gala). Spectrophotometer with fiber optic probe was utilized for spectrum measurement and digital refractometer was used for soluble solids content. Correlation between absorbance spectrum and soluble solids content was analyzed to pick out the optimal wavelengths and to develop corresponding prediction model by means of MLR. For the coefficient of determination($R^2$) to be over 0.92, the MLR models out of the original absorbance were built based on 7 wavelengths of 992, 904, 1096, 1032, 880, 824, 1048nm, and the ones of the second derivative absorbance based on 5 wavelengths of 784, 1056, 992, 808, 872nm. The best model of the second derivative absorbance spectrum had $R^2$=0.91, bias= -0.02bx, SEP=0.28bx for unknown samples.

  • PDF

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.

Multiple-threshold asymmetric volatility models for financial time series (비대칭 금융 시계열을 위한 다중 임계점 변동성 모형)

  • Lee, Hyo Ryoung;Hwang, Sun Young
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.347-356
    • /
    • 2022
  • This article is concerned with asymmetric volatility models for financial time series. A generalization of standard single-threshold volatility model is discussed via multiple-threshold in which we specialize to twothreshold case for ease of presentation. An empirical illustration is made by analyzing S&P500 data from NYSE (New York Stock Exchange). For comparison measures between competing models, parametric bootstrap method is used to generate forecast distributions from which summary statistics of CP (Coverage Probability) and PE (Prediction Error) are obtained. It is demonstrated that our suggestion is useful in the field of asymmetric volatility analysis.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

Identifying Factors for Corn Yield Prediction Models and Evaluating Model Selection Methods

  • Chang Jiyul;Clay David E.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2005
  • Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity $(EC_a)$, slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with $\Delta_i\leq2$ were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and $EC_a$ were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.

Development of the Index for Estimating the Arc Status in the Short-circuiting Transfer Region of GMA Welding (GMA용접의 단락이행영역에 있어서 아크 상태 평가를 위한 모델 개발)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.85-92
    • /
    • 1999
  • In GMAW, the spatter is generated because of the variation of the arc state. If the arc state is quantitatively assessed, the control method to make the spatter be reduced is able to develop. This study was attempted to develop the optimal model that could estimate the arc state quantitatively. To do this, the generated spatters was captured under the limited welding conditions, and the waveforms of the arc voltage and of the welding current were collected. From the collected waveforms, the waveform factors and their standard deviations were produced, and the linear and non-linear regression models constituted using the factors and their standard deviations are proposed to estimate the arc state. the performance test to the proposed models was practiced. Obtained results are as follow. From the results of correlation analysis between the factors and the amount of the generated spatters, the standard deviations of the waveform factors have more the multiple regression coefficients than the waveform factors. Because the correlation coefficient between T and {TEX}$T_{a}${/TEX}, and s[T] and s[{TEX}$T_{a}${/TEX}] was nearly one, it was found that these factors have the same effect to the spatter generation. In the regression models to estimate the arc state, it was fond that the linear and the non linear models were also consisted of similar factors. In addition, the linear regression model was assessed the optimal model for estimating the arc state because the variance of data was narrow and multiple regression coefficient was highest among the models. But in the welding conditions which the amount of the generated spatters were small, it was found that the non linear regression model had better the estimation performance for the spatter generation than the linear.

  • PDF

Characteristics and Models of the Side-swipe Accident in the Case of Cheongju 4-legged Signalized Intersections (4지 신호교차로의 측면접촉사고 특성 및 사고모형 - 청주시를 사례로 -)

  • Park, Sang-Hyuk;Kim, Tae-Young;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.41-47
    • /
    • 2009
  • This study deals with the side-swipe accidents of 4-legged signalized intersections in Cheongju. The objectives are to analyze the characteristics of the accidents and to develop the related models. In pursuing the above, this study gives particular emphasis to finding the appropriate methodology to modelling. The main results are as follows. First, injuries were analyzed to be twice than property-only accidents in the side-swipe accidents. The accidents were evaluated to occur more in inside-intersection. Also, the accidents were analyzed to be almost the auto-related accidents and to be occurred by the unsafely-driving activity. Second, multiple linear regression models were evaluated to be more statistically significant than multiple non-linear. The most fitted models were analyzed to be the models with the number of accidents as the dependent variable. The factors of side-swipe accidents analyzed in this study were ADT, area of intersection, right-turn-only-lane, number of pedestrian crossings, limited speed of main road, maximum grade and number of signal phase.

  • PDF

Development of Accident Forecasting Models in Freeway Tunnels using Multiple Linear Regression Analysis (다중선형 회귀분석을 이용한 고속도로 터널구간의 교통사고 예측모형 개발)

  • Park, Ju-Hwan;Kim, Sang-Gu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.145-154
    • /
    • 2012
  • This paper analyzed the characteristics of traffic accidents in all tunnels on nationwide freeways and selected some various independent variables related to accident occurrence in tunnels. The study aims to develop reliable accident forecasting models using the various dependent variables such as the number of accident (no.), no./km, and no./MVK. Finally, reliable multiple linear regression models were proposed in this paper. This study tested the validity verification of developed models through statistics such as $R^2$, F values, multicollinearity, residual analysis. The paper selected the accident forecasting models considering the characteristics of tunnel accidents and two models were finally proposed according to two groups of tunnel length. In the selected models, natural logarithm of ln(no./MVK) is used for the dependent variable and AADT, vertical slope, and tunnel hight are used for the independent variables. The reliability of two models was proved by the comparison analysis between field data and estimating data using RMSE and MAE. These models may be not only effective in evaluating tunnel safety under design and planning phases of tunnel but also useful to reduce traffic accidents in tunnels and to manage the traffic flow of tunnel.

Stochastic Duels with Multiple Hits, and Fixed Duel Time

  • Kwon, Tai-Young;Bai, Do-Sun
    • Journal of the military operations research society of Korea
    • /
    • v.6 no.2
    • /
    • pp.69-88
    • /
    • 1980
  • A stochastic fundamental duel with continous interfiring times is considered for including the kill effect of multiple hits and fixed duel time. Two alternatives, 'vital hit' and 'damage coefficient' approaches, are developed. Since a large quantity of ammunition is consumed when a sure kill is obtained through repetitive multiple hits, limitation of initial ammunition supply is included in the stochastic duel models with multiple hits and fixed duel time. General solutions are obtained and examples with negative exponential interfiring times and geometric ammunition supply are given.

  • PDF

Reliability for Multiple Reviewers by using Loglinear Models (로그선형모형을 이용한 복수 평가자들간의 신뢰도에 관한 연구)

  • Park, Byung-Joo;Lee, Sung-Im;Lee, Young-Jo;Kim, Dong-Hyun;Kwon, Ho-Jang;Bae, Jong-Myon;Shin, Myung-Hee;Ha, Mi-Na;Han, Sang-Whan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.4 s.59
    • /
    • pp.719-728
    • /
    • 1997
  • To guarantee the inter-reviewer reliability is very important in evaluating the quality of large number of clinical research papers by multiple reviewers. We cannot find reports on statistical methods for evaluating reliability for multiple raters in clinical research field. The purpose of this paper is to introduce the statistical methods focused on kappa statistic and five kinds of loglinear models for, which can be applied when evaluating the reliability of multiple raters. We have applied these methods to the result of a project, in which seven reviewers have evaluated the quality of 33 papers with regard to four aspects of paper contents including study hypothesis, study design, study population, study method, data analysis and interpretation. Among the five loglinear models including Symmetry model, Conditional symmetry model, Quasi-symmetry model, Independence model, and Quasi-independence model, Quasi-symmetry model shows the best model of fitting. And the level of reliability among seven reviewers revealed to be acceptable as meaningful.

  • PDF