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ABSTRACT

A stochastic fundamental duel with continous interfiring times is
considered for including the kill effect of multiple hits and fixed duel
time, Two alternatives, “vital hit ”» and “damage coefficient ” app -
roaches, are developed. Since a large quantity of ammunition is con-
sumed when a sure kill is obtained through repetitive multiple hits,
limitation of initial ammunition supply is.included in the stochastic
duel models with mulﬁple hits and fixed duel time,

General solutions are-obtained and examples with negative exponential
interfiring times and geometric ammunition supply are given,

1. INTROUDCTION

In the fundamental duel (9), the assumption that the combatant who scores
a hit first is the winner implies that a hit alwayé results in a kill, However,
operational experience indicates that this may not be true .

To remove the-assumption that a sure kill is achieved by a single hit,
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Bhasyam (3) first constructed stochastic duel models with “lethal dose ”
using a difference -differential equation technique, However, his approach is
limited since it is difficult to include additional factors in the duel model
because each additional factor must be used as a state variable in the differ-
ence — differential equations,

In Section II, two alternatives are developed, “vital hit shot ” and “damage
coefficient ” approaches which i.nclude the kill effects of multiple hits in the
fundamental duel for the case where ammunition supply is unlimited and only
a single shot can be fired each time (7).

In the <“vital hit ” approach it is assumed that a sure kill is obtained
only at the vital hit shot and that the number of shots required to get a
sure kill follows a negative binomial distribution_ In the “damage coeffi -
cient » approach, on the other hand, it is assumed that regardless of the number
of previous hits the chance of destroying the target with any hit shot is always
the same, In this approach renewal theory is utilized. Both approaches
ITead to the same result if random vital hit shot follows a geometric
distribution,

One important aspect to be considered in stochastic duels is the limitation
on ammunition supply, especially for the case where a sure kill is obtained
through multiple hits and therefore a large quantity of ammunition is consumed.
Thus, in Section M, the kill effect of multiple hits is incorporated into the
fundamental duel for the case where ammunition supply is limited and only

single firing is allowed,
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II. Multiple Hits with Unlimited Ammunition Supply

I. 1. Vital Hit Approach(7)

It is assumed that (1) both 4 and B start the duel with unloaded wea -
pons and unlimited time, and have fixed single shot hit probabilities #, and
bs,and interfiring time probability density functions (pdf) fa(t) and fp (¢)
respectively, and (3)° A kills B exactly at A’s r -th hit (A’s vital hit)
on B and A is killed exactly at B's k-th hit,

We here define that
F. (¢) : A’s dististribution function of interﬁring times on passive target B,
Hy,{t) : the distribution function that A scores the vital hit first in (0, ¢)

with (r— 1) hits and = misses prior to the vital hit,
ha, (¢): the pdf that A scores the vital hit first in (¢, ¢+ df ).
a'®(t): the x-fold convolution of function a(z).
a*(s) : the Laplace transform of function gt ).
Then, we can express the probability dH, (¢t) by techniques similar to

williams and Ancker (9) as

(1) dH, ()= 5 FT7 b0 af dRiT @)
If we assume that fF,(¢) is absolutely continuous and
dF, 9 () = f.9(t) dt,

we obtain Laplace transform of eguation {1) as

_ s xtr—1 r o x r pa fa*ls) \7
(2) ha,*s) '—;::0( . ) b @l (s )™ = qu—:m>

hg, (s) is similarly defined for duelist  B.
Equation (2) coincides with Bhashyam’s result (3).
However, our approach is simple and concise, whereas Bhashyam’s derivation

involves complicated difference -differential equations,
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A general solution for stochastic duels consists of finding the winning
probability of a given side and the probability of a draw, For duelist A,
if ¢ is time until A kills a passive target, the probability P (r; A) that
A kills B before he is killed when the duel .time is limited to r can be
given by
PG = [Th) ([ a)ar = [TheiF, B ar
where & (¢ : A,, By)dt is the probability that A scores » —th hit before B
obtains £ —th hit in time interval (¢,¢ + dt ) and the bar (—) indicates the
duelist who has the vital shot first,

Then, we obtain P*(s; A) by techniques similar to Kwon and Bai (5, 6, 7)

and Bai and Kwon (2} as
(4) P*(s; A) = (L) k* (s A, Ba)
1 C+ioo
:(%)[2751 \[c‘-iw hAt(S‘*‘Z) hB ( Z)——]

The probability P(r ; AB) of a draw is

5) PCr s ABY = [ [ Tha(6) hoy () at a

:fT'ImhA,(t) hs, (z) dr dt + f:f:}z,,, (£) hslz) dt dr

= [T{kG; A BO+ R 5 A B dr
From the final value theorem (4), 7 .e.,
(6) lim s-P*(s; A) = lim P(r, A)
and equation (4), the probability P (4) that A wins when the duel time is

unlimited can be written as

(7) P(A) = lim P(r;A)

T o0

= f haglt) [ [ oy (o) ae ) ar

[7%he e mt o dz

2

27tz
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For B, P(r;B), P*(s; B) and P(B) can be similarly obtained,

If the number R of hits required to obtain the vital hit is assumed to be
random and geometrically distributed with parameter ¢,= Py (kill/hit), that
is, Pr (R=r)=ca( 1—c4) ", the probability k, (¢)dt that A will kill B
exactly at the r—th hit in time interval (#,t+df ) can be expressed as
(8)  ka(t)dt = ca(l—ca)™™ ha (t) dt.

We also have

O kE s = (1) (p"(ll—_qi'}i*ﬁm)r.

. By summing equation (9) over 7, the Laplace transform ka(s) of kill pdf

kq(t), which is a weighted average of k,, (f), can be obtained as
pa( 1_CA)fA (s) 1
(10) ks (s) =
4 <1—¢‘A) [ 14q f*(S) ] [ 1_[7,4(1_6‘.4) f:q*(S)
__ *
pacafils) trasits)

1= (1=paca) fa*(s)
similarly for B,

pB Cp ﬁ;*(S)

* _
(11) kg (s) = 1= (1= pgep) fo * (s)

With arguments similar to the ones leading to equations (4) and (7), we have
1 o '
(12) P*(s;A) = (5) k*(s; A, B)
1 c+ioo
(%) [Z_ni_fc_,-w ki (stz) ke (—2) E'zi]
and

1) P = a7 [ RS @ ket 2 L

2re

I1.2. Damage Coefficient Approach

Equation (10) can also be obtained by the damage coefficient approach,

Morse and Kimball (8] expressed the probability P (4A) that A destroys his
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opponent as

(4) P(A) = 21 Py, * ca
where P, is the probability of i hits by a given firing method of duelist A
and ¢ 4, called a damage coefficient, is the conditional kill ,probability given
¢+ hits. As a matter of operational experience it has been found that damage
coefficient in many cases can be given by the law of composition of indepen —

dent probabilities as

(15) ¢q = 1— (1— ca ), i=1,2,3 ...
which is based on “vital spot” hypothesis; that is, a target will bnly be
destroyed if it is hit on its critical spots and hits other than these spots will
damage, but not destroy the opponent,

With the kill effects of multiple hits expressed as in equations (14) and
(15) and using renewal theory, equation (10) can be derived as follows ;
N4 (r) : the number of shots fired by contestant A during time interval (0,7 J.
T. (n) : total elasped time in delivering #z - shots to the opponent .

H, (r) : the number of successful hit shots in (0, 7).

Then, we have

(15) P (N, (r)=n) PWye(r)<nt+1)— P (N, (r)<m )

1

= F (1) = Far (1) .
where

T
Fo(e) = P(Ta(n)r) = fofw (t) dt,

and
(16) P(Hy(7)=i) =5 PH()=i/NaGr)=n)+ P (Ns(r)=n)
n=0Q .
= 21(;’) DE A (Fo(r)— Fon (1)),6=1,2, ...,

The probability K(r; A) that A kills his passi\}e target in time r is
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obtained, from equations (14) — (15) and (16) , as

(A7) K(r; A) = f;TkA ) dt

8

= ZP[HA( )—l]’CA’.

i=1

il
™8
1 iNgt]

Ul
-

2 G bh 0l (Fa (1) = Fana (7)) + (1= (1= )"

where ¢, = ¢y, .

Hence, we have

Il

3 Mx

(18) K*(s; A) f M b5 g™ (5 (Fr(s) )" Ligrispmy.

(1=(1—ca)*)
() § (o (2557

<£’.‘_)i [l— (1—- cA)"]

da

S R paca f¥(s)
N (S) [1“(1"PACA)fA*(S)]

From equations (17) — (18), we find

Da Ca fA*(S)
1= (1= paca) fi* (s)

kA*(S) ==

Example II-1 (vital hit shét/negative exponential)

In this example, the probabilities P(r;A), P (r; AB) and P(A4) with
vital hit shots » and %, of equations (3),(5) and (7) are derived for negative
exponential interfiring times,

Let falt) = rae™' and fs(t)=rze", where 7, and 7, are rates of
fire for A and B respectively. Then, we have

(19)  fu'ls) =—2A— +r R A +r3

(20) ka4 (s)= (%‘;)r th(S) - (TJr—M)k
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where 2,= 7, p and s = 75 ps_

From equations (4) and (20), we obtain

_ _ 1 rooe 1 oie 1 >' ( 1 )k dz
P*(S'A)_'(?){“ %o 2w fc-;m <s+z+z,, —z+ T}

where the contour integral has a pole of order % at z = 1, .

The integral can be evaluated by expanding the integrand in Laurent series

(4) and .then finding the doefficient of (tlexB)'

we then have

@D P*(s; A) = (is):;j(ﬁr_l)- <s+§:+ /IB),' <s+jf+xg)y’

i A B = (1) (o) (el )

y=0 y S+1A+15 s+ 1A+/{B
and
— k-1 _ l’ ly o
. — y+r—1 A AB Tyt o=+ gl t
BU AL BD = 2 Oy ) G55
Hence,

@) PGiA) = [kt 4, B at

_ Izz—l <y+r_1) ( Aa )r ( Az )y' L(r+y)
prst y At s Aa+ 25 r'(r+y)

[
where 71} (@) = f ¥ 1 e 7 dy and 8= (Qa+ )~
0

By using the well - known relations

k-1

(22) ¥ (y+y’_1> == (1= Lk, 7))
y=0

and

(24) fme" xtdy = t1P(X=<: )
7
= 1 P(Y= 27)

where I,Ck,7r) :I}(‘Iz)k-:%@ foﬂpk_‘(l—p)'“‘ do
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X is a Poisson random variable with paraméter 7 ,and Y is a Chisquere
pdf with degree 2: + 2, P (7; A) of equation (22) can be rearranged to
yield

(25) P(r;A)=(1— L, (k,r))—L(r;A)

where
k-1 r+y-1 i
. = (1—7n)" yrr—=1. _y —(au+tdg1 | {24+ 25) 7}
L(r; A) (1 7?) Eo( y Yn?e i;o B
and N = — lB
Aat+ g

The probability of a draw can be written as

(26) P(r: AB) = <:§) &I%@i’f_) -. (f‘;: (ZBT]_)!j e—xBr>, o

= L(r;A)+ L(r; B),
where L (r; A) is given by equation (25) and L(r; B) is obtained by

interchanging 2, and A, and » and 2 in L(7r; A).

We also have
@n pPA) = lim p(r;A)=1-1, (k,r)

which can also be obtained from equation (6) and (21).

We note that equation (21) coincides with Bhashyam’s result (3] .

Example I1-2 (weighted average/negative exponential)

In this example, the probabilites P(r; A) and P(A4) with weighted
average values of equations (10) - (11) are derived for negative exponential
interifiring times,

From equations (10) - (13) and (19), we have

Cc+goo ’ 1

1
(28) P*(s;A4) = (rApAcA>(erBcB) ﬁj;—i@ (S+z+74PACA)(—Z+7’APA'CB)

dz
z
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_ 1 Y4 DaCa
—.(3) [8+7APACA+ 7’BPBCB]

which can be inverted to yield

7a Da Ca -
29 : = — (rq bgcptrg Ppcg) T
( ) P(T’A) 7a paca +rApAcA (1—e ? ? )

From this we also have

- Y4 DaCa
(30) P (A) Ta DaCa + s Pp Cs

whieh also coincides with Bhashyam’s result (3).

III. Multiple Hits with Limited Ammunition Supply

In this section we include the the kill effects of multiple hits in the
fundamental duel when both duelists have limited ammunition supply and
use single firing mode . Assumbtions in Sectieon I remain valid,
Here, we define that
«; : the probability that A starts the duel with ammunition stock i rounds.

Bi is similarly defined for B,

Obviously

i=0

> ¢, =1 and 3 g=1
i=0
dajna’ the probability that A scores the vital hit shot on the passive

target in (¢, ¢ +dt ) when the amount of initial ammunition stock

( which is greater than or equal to » rounds) is limited.

¢, : the probatility that the vital hit shot can not be obained due to

ammunition shortage .

Then, we obtain

i—r

w Z T el a0 ) at

Ms

(B dapnar =

t=r
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b, = Lo & (1) pFair
' t=0 x=0

Hence, A’s probability density function ¢,,(¢) of the random time to
obtain a sure kill at the 7 -th hit with limited ammunition can be expressed

by techniques similar to Ancker (1) , as
Gaptrar = Palirrar T ba, + 8 (E— =) dt.
We then have
G2 dare = T & CHTD pLqf (s
= ha (s) - {ga (1= 1Iq, s*sn (G—7+1, r)J}_.

where h}‘,(s) and I, (m,n) are given in equations (2) and (24) respectively,

Similarly, we can obtain ¢p¢() and ¢, as

@) dafia = kg (s) - { L 8 U= Lyt Gh+ 1L 8D}
£

and

(34) ¢Bk =

.MS

k-1 . .
PV PR
. ¥=0 .

7=0

A’s winning probability P(r; A) with limited duel time and limited

ammunition supply can be expressed as

@5 P(riA) = [a10) [ [ onlc) ar ] a

- formﬁ(” {f,m[%i (z) + 5, = 8 (r— ) ) dr} dt

= ﬁT¢A; (t) [‘[;w(bB/', (T)d‘r]dtl-}- ¢Bk'j;T¢A,'(t)dt.

With the same arguments leading to equations (4) and (7), we have

@8 Pris; ) = (1) {5 [T el s +e) oy (—a) L+ g, -
o% (s) }
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and

G P = 5 [T ek @) e (—2) 4t gy - (1-04,).

27Ei c—fo

c+s

Similar expressions -for P(r; B) and P(B) can be obtained.
The ‘probability P(r; AB) of a draw due to duel time-limitation and

ammunition shortage is

@) PGiag) = { [ o trat} - { [Ton ) ac}
{f:"’ﬁi(”d’} : {f,m%é(f) dr} + m,-f:qsg,g (c) dr

+ ¢s, f;b,l; (£) dt + ¢a, * 05, >

Il

whereas the probability P(AB) of a draw due to ammunition shortage is
(39) P(AB) = ¢4 - 6s, .

For the special case of fixed ammunition supply , we obtain a duel model
as follows ;
Let
(40) a; = 1 for i=m fi =1 for j=mn
=0 otherwise, =0 otherwise
where m=>7» and n=%.
Substituting equation (40) into equations (31)— (34), we obtain

c+ioo

P*(s; A) = (%) {ﬁrfc_i‘m ¢ar (s+2) ¢ay (—2) %z—+ ¢:’,,,(S)'¢B,,},

(41) P4 = L fc““qs}m (2) ¢z, (—2) % + ¢5, (1— ¢, ) and

2ns —§oo

P(AB) = P4, © Ps,

where
¢:,'” (s) = h:, {s) « [ l—l(qA fA*(s)) m—r+1,r)) ,

¢B{, (s) = h;; {s) - (1— [(foB*(s)) (ﬂ"k—*— 1,k)] y
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ba,, = r;, (:‘) pr (IAm_x,

and

_ & on y -y
®s, = > () bz g5
y=0 Y

Example IM-1 (vital hit shot/geometric/negative exponential)

The probabilities P(r; A), P(A) and P(AB) with vital hit shots r and
k are derived for geometric ammunition stopks and negative. exponential inter-
firing times,
Let
(42) a; = (1—a) o' and g; = (1—',0') B
From equations (32) and (42), we can have
43) 635 s) = (=) (Gufi*(s)) T & T (@ s 1507

_ (ap,qf:(s) ),
1—aq,4f;q(8)

Furthermore, if fi(t)=7rse™* and f; (t) =7;e™' , equation (43) is

rearranged to yeild"

* _ A4 Da r
(49) ¢ (s) = (sﬂﬁ(l_%)) |

Substituting equation (42) into ¢, iniequation (31, we also have

45) 6., = (- a)Z S b gt

Similarly for B we have

ﬂerB >k
s+rs (1— Bgs)

(46) ¢5:’ (S) = (

and

) ga = 1- (%)k
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Hence, by substituting equations (44) — (47) into equations (35)— (39),
the probabilities P(7;A), P(A), P(r; AB) and P(AB) can be obtained
as follows,

First, we have

(48) P*(s:A) = (31) {E‘,l;,‘fc_c: (3—1—240—!:: ?Ai— aq,,))r <——z+ri€81‘—ﬂqs))k

-—di+ b5, ° <s+rf?lpiaq,4) )'}

(o{E) B oD (';;ZTU
(52s-) + - () ) 25

where 0A=7A(1—aq,a) and 05273(1“‘}9413)~

P*(s; A) can be inverted to yield

(49) P(r;A) = (_dﬁ,;_)'_ {(161);%)’2 : [1—Iz(k,r)]

1— aqga

v [1- <—1f?q3>k]}" AGr; A)

where

2 Grt) B ()

r:g‘_{(_@%e)j_ﬁ . (04t T | [1— <'1f%>k]

( (ZDA >r . ’i}! (OAT)ie‘()AT
1— aqa =0 1!

A(r; A) = (

z —_0 and I, (k,r) is given by equation (23).
0,+ 60, .

Hence, P (A) can be expressed as equation (49) with A(r;4)=0.
From equations (44) — (47) and - (38), P(r; AB) can be obtained as

(50) P(r;AAB)Z{( b )' Py m"T) ol +[1 (15‘_1::%) ]}

1—an 1=0
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() 580 s (- ((22)"))

i=0 1—agy

= AgT;A$+A(T;B>+ [1.— (_:“_”_)] :

1—aga
[1' ( 151);%)"] .

Obviously, P (AB) becomes

v pus) = [1- ()] (- (G22-))

1— gz

and equations (49) and (50) with a@=g=1 reduce to equations (25) and

(26) respectively .

Example IM-2(weighted average/geometric/negative exponential)

Here we obtain the winning probability of a given side and the probability
of draw with weighted averages ¢,(¢) and ¢5(¢#) when random vital hit shot
and random initial ammunition supply are geometric and interfiring time are

negative exponential .

With argunients similar to those leading to equations (10)—~(11) , the

weighted averages ¢,% (s) of ¢, (s) and ¢, of ¢, can be obtained as

(52 ok 1) = T o ls) [ea (1= )

_ ~ dp,q Ca f:q*(S)
B 1—d(1_pACA)f,'4* (s)

= —t _ l1—a
(83) 6. = ,El‘b"r [C”(lvc’*) ] T 1=a(l=paca)

where ¢’:; (s) and ¢, are given in equations (43) and (45).
If falt)=rae ' and fs(t) = rse™#', equation (52) can be rearranged to
yield .

* _ A 74 Pa Ca
(5 ¢x (s) = < O—a (1= paca) )
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Similarly for B ¢s(s) and ¢, are obtained as

* _ ﬂrBPBCB
(55) @5/ (s) = s+ 7 (1—B(1—pscs) )
and
5 =
(56) @5 1— B (1—ppcs)

Then, P*(s;A), with the weighted averages in equations (53)—(56), is
given by

51 P A = () {Fr [Tl s+ s Bt gy 03 () )

_1_ a 7 D Ca . .
(s {( str U—a(l=paca) )+ 75 [l—ﬂ(l—chB)J>

(l—ﬂﬂ(piiBCBPB)>+ [ 1*‘;_(,?“17303)] '

[s+rA ?lgﬁ(cf-p,, ca)) ] } ’

and its inversion becomes

. — ﬂPBCB arAPACA
(58) P(r;A) = (l—ﬂ(l—pgcg)> <r,, (I—a (1= paca) )+ 7s [l—ﬂ(l—chB)J>

{1— exp (— (ra(l—a (1=~ paca)) + 75 (1‘—ﬂ (1“173 c#))) T)}

+ <1_/91;1€f736‘5)> . <1—dal(bﬂli1mc,a)> )

{1— exp (— 74 [1—a(1*pAcA)JT)}.

If the duel time is unlimited, equation (58) reduces to

B Pacs ) ( aA74 Pa Ca >
,19(1~ Ds CB) ra (1—« (I—PACA)J‘H’B [1“/9(1‘173 CB)]

i ame) i)

The probability of a draw becomes

(60) P(AB) =¢s- ¢5= (1_;;1(1PACA)> (1—;{?—1:3@,))

9 P = (=

- 84-



- vee O] FFRMK (] ~oveens

Obviously, equation (59) reduces to equation (30) when e¢=g=1.
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Fig. 1. P(A) with limited ammunition supply

Fig. 1 depicts P(A) in equation (59) with 7, =7, paca= pacs= 0.

Two values of 4,8="0,1 and 6= 0.01, are considered here_
It shows that AXs winning probability increases for fixed @ as g decreases

and shifts downward as & decreases, P (4) with unlimited ammunition
supply in this case has only a fixed value: % whereas P(A) with limited

ammunition supply has various values depending on the values on « and 4.
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Example IM-3 (weighted average/geometric/gamma with order 2)

Suppose that the interfiring times are random variables with pdf’s ﬂ(t)z
dry te™®a' and fy{t)= 47 te*s'. we then have

et = (Y e gt = (25)

From these and equations (52) —(53) we have

i) = thaca2ra)
(s+ 27— a(1— Da ca) (27,)°
and
1—
pa = e

1—a (1= paca)

we also have

B Ds cs (275 )°

¢:’ (s) = 2 2
(s+ 27) — 5 ( 1—ps cz) (273)
and
_ 1—4
s = 1‘_,3(1—178 CB)

Hence, A's winning probability P(A) with the above weighted average

values can be written as

60 P = e [ 5 (s) 85 ) LS 1 (1= 60 - 4

joo

C+ioo
f o s+ 27—
[t Sl

= dpaca (27,)% « Bpscs (275)% - 2 1

o (1_pA ca) (2r)? )t - ((—s+ 27’5)2_}9(1_173 cg) (2752 )71 -

_i_s+ <1‘ﬂ1(_1€17503)> (1—:?11?1?,40,;))‘

Since the contour integral of the above equation has two poles at s= 27, (1+

N B(1— pscg)) and s= 27, (1— \/ﬂ (1— pgcp)) it can be evaluated by summing

two residues at each pole.
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The result becomes

62) P4) = <d/9pApBCA_CBrAZ> (%)+( 1—3 )( & baca >

1— (1= p5 cs) 1—8 (1— pp cs) 1= (1= pa cs)
where
M = 7’,42 (l—a(l—pAcA)J—r,? [1—,3(1’_173 cs) I+ drg (rat+ 7)),
and
_ 2 2 | 2 :
N = {7’A (1—a(l—paca))— 75 [1*/9(1_‘?503))} + 4775 (ra+75)-

{7’4 [1“‘(1 (1— pACA)J+ 4] [1_‘ﬂ (l_pg CB)IJ}.

we also have

(1-a) (1= 4)
(1—a (1= paca)) (1= (1= psecs) )

(63) P(AB) =

which coincides with Ancker’s result (1) if ¢, = ¢ = 1.

IV. Discussions

In this paper, the “fundamental duel” studied by Williams and Ancker is
extended to include various limiting factors such as a sure kill by a multible
hits, conditional kill probability on hit, fixed duel time, limited amount of
ammunition, etc,

The results of this'study may be utilized in evaluating weapon, combat
and combat— support capabilities, and in designing optimal levels of weapon
effectiveness parameters, The stochastic duel mddels developed here for the
case of single firing mode may also be extendeded to the case of multiple

firing modes ; pattern firing (7}, salvo firing and dispenser firing.
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