• Title/Summary/Keyword: Multiple Measurement Locations

Search Result 39, Processing Time 0.02 seconds

Process capability index for single process with multiple measurement locations (다수 측정 위치를 갖는 단일 공정의 공정능력지수)

  • Lee, Do-Kyung;Lee, Hyun-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.28-36
    • /
    • 2007
  • Process Capability indices (PCIs) have been widely used in manufacturing industries to provide a quantitative measure of process performance. PCIs have been developed to represent process capability more exactly. In the previous studies, only one designated location on each part is measured. But even though in single process, multiple measurement locations on each part are required to calculate the reliable process capability. In this paper, we propose a new process capability index with multiple measurement locations on each part. We showed numerical examples and sensitivity analysis according to the number of measurement locations.

A Study on Expression of Process Capability and Sigma Level (공정능력과 시그마 수준의 표시에 대한 연구 : 다수 위치측정에 대한 공정능력지수 기준)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-116
    • /
    • 2009
  • Process capability indices have been widely used in manufacturing industries to provide a quantitative measure of process performance. PCIs have been developed to represent process capability more exactly. In the previous studies, only one designated location on each part has been measured. But multiple measurement locations on each part are required to calculate the reliable process capability. In this paper, we propose a new process capability index dealing the multiple measurement locations on each part. Also we showed the relationship between the new index and sigma level according to the number of measurement locations.

Calibration and INvestigation into Measurement Performance of a Visual Sensing System (시각측정시스템의 캘리브레이션 및 측정성능 검토)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

Beacon-Based Indoor Location Measurement Method to Enhanced Common Chord-Based Trilateration

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1640-1651
    • /
    • 2017
  • To make an unmanned aerial vehicle (UAVs) fly in indoor environments, the indoor locations of the UAV are required. One of the approaches to calculate the locations of an UAV in indoor environments is enhanced trilateration using one Bluetooth-based beacon and three or more access points (APs). However, the locations of the UAV calculated by the common chord-based trilateration has errors due to the distance errors of the beacon measured at the multiple APs. This paper proposes a method that corrects the errors that occur in the process of applying the common chord-based trilateration to calculate the locations of an UAV. In the experiments, the results of measuring the locations using the proposed method in an indoor environment was compared and verified against the result of measuring the locations using the common chord-based trilateration. The proposed method improved the accuracy of location measurement by 81.2% compared to the common chord-based trilateration.

Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance (음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰)

  • SEO, SEONGHYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

Analysis of the Local Air-Change Effectiveness by Field Measurement (실험을 통한 환기시스템의 국소적 환기효율 분석)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.63-67
    • /
    • 2017
  • The purpose of this study is to analyze the Age of Air and the Local Air-change Effectiveness of by field measurement. The indexes of Age of Air and Local Air-change Effectiveness are used to analyze the local ventilation effectiveness of multiple locations and are mainly evaluated using the computational fluid dynamics (CFD) method. In this study, measurement of the Local Air-change Effectiveness was based on ASHRAE 129. The performance of Local Air-change Effectiveness and the dependence of the outlet location on Local Air-change Effectiveness were analyzed. The results showed that a greater air-change rate (ACH) may not guarantee better local ventilation effectiveness.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

A study on velocity measurements of natural convection flows using multiple pulsed particle image analysis (다중노출 입자영상해석을 통한 자연대류 유속측정에 관한 연구)

  • Han, H.T.;Kim, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1997
  • Using the film-based particle image velocimetry, natural convective flows have been measured quantitatively in a rectangular enclosure with a heater located on the bottom surface. The success rate of the present interrogation method has been obtained as a function of the number of particle pairs and the distance between the particle pairs. The influence of the diffraction halo at the center have been effectively eliminated by rotating-subtracting the original Fourier-transformed image. By utilizing the coded multiple pulsed illumination with two different time intervals, the minimum measurable velocity have been improved. The results of the velocity distributions and the heat transfer correlations have been obtained for different locations of heater in the enclosure.

  • PDF

Heavy-weight floor impact noise propagation in a multi-story building (다층 공동주택의 중량충격원 전파 특성 해석)

  • Lee, Sinyeob;Hwang, Dukyoung;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.225-226
    • /
    • 2014
  • In multi-story buildings, heavy-weight floor impact noise propagates through multiple layers. In order to evaluate the influence of structural vibration and propagation, the actual twelve-story building was excited by an impact ball. Sound and vibration responses of each floor was measured using accelerometers and a microphone. Vibration characteristics and its transfer paths were different depending on the excitation floor locations due to differences in the structural characteristics. From the measurement result, transfer characteristics were quantified by statistical energy analysis. It was confirmed that the heavy-weight floor impact noise influence not only adjacent floor. The impact noise transferred and affected multiple layers.

  • PDF