• Title/Summary/Keyword: Multiple Holes

Search Result 108, Processing Time 0.026 seconds

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

Analysis & Comparison of Stress Concentration Factors of 2D Plate with Single/Multiple Hole (2차원 평판 단일/다중 구멍에 대한 응력 집중 계수 해석 및 비교)

  • Lee, SangGu;Gong, DuHyun;Sim, JiSoo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.209-216
    • /
    • 2016
  • Holes of rivets, bolts and nuts may cause stress concentration on the plates used in aircraft, ship and other structures. Excessive stress concentration may lead to severe breakage of the plates. Thus, accurate analysis of the stress concentration at the design stage will be important. In this paper, accuracy of EDISON program in stress concentration analysis was examined. By changing hole size on a narrow plate, the change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of holes on plate to investigate the interaction between adjacent holes. Then, these numerical results were compared with the analytic prediction. EDISON program showed very high accuracy about stress concentration, since the numerical results was correlated well with the analytic prediction.

  • PDF

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

A Multiple Planting in a Hole for Producing an Aromatic Tobacco Variety, Sohyang(Nicotiana tabacum L.) (향끽미품종담배의 식혈간 거리와 식혈당 주수가 수량 및 품질에 미치는 영향)

  • 정기택;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 1981
  • This study was carried out to investigate the influence of distance of planting holes (51, 45, and 40 cm) and number of plants per a hole(4, 5, 6 plants) on agronomic characteristics, yield, and quality of an aromatic tobacco, Sohyang. The results are as follows: 1. Relative light intensity increased by widening the distance of holes. 2. Leaf area per a plant or per a leaf, and leaf length and width increased by widening the distance of holes and decreased by increasing the number of plants per a hole. But L. A. 1. increased by increasing the number of plants per a hole. Leaf shape index (Leaf length/Leaf width) showed little differences among treatments. 3. Dry weight of leaf, root, and stem per a plant decreased by increasing the number of plants per a hole. 4. Total nitrogen decreased by increasing number of plants per a hole and in the case of narrow distance of holes, but nicotine, reducing sugar, ether-extract and ash showed little differences. 5. Yield per 10a decreased by widening the distance of holes. 6. Quality(price per kg) was improved by increasing the number of plants per a hole at the Plot of 51m distance of holes. But there was no variation at the Plot of 45cm. And quality was decreased at the plot of 40cm distance of holes by increasing the number of Plants per a hole. 7. Price per 10a was highest in the plot of which plant spacing was $90\times$40cm and the number of plants per a hole was 4 (11112 plant/10a).

  • PDF

Unequal Distance Sampling Technique to Design Velocity-Type Respiratory Air Flow Transducer (속도 계측형 호흡기류센서 설계를 위한 비균등 샘플링 기법)

  • 김경아;이태수;차은종
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.351-359
    • /
    • 2004
  • Velocity-type repisratory air flow transducer measures dynamic pressure converted from air velocity based on the we1l-known Bernoulli's principle. It requires multiple velocity sampling holes on the flow plane. Measurement error theoretica1ly estimated by computer simulation was demonstrated to significantly reduce by unequally locating the velocity sampling holes. The flow plane was divided into multiple equi-area rings and the sampling holes were located on the circles also equally dividing each ring's area, which decreased measurement error down to 1/5 of the simple equi-radius ring division method. Also, less than 1 % relative error was estimated with 4 or more sampling holes. The present technique was less sensitive by <1/2 to the velocity profile change compared to the euqi-radius sampling. Therefore, the present unequal distance velocity sampling technique should be of great use to design the structure of the velocity-type respiratory air flow transducer.

Cognitive User's Quality of Service Enhancement by using Spectrum Hole Grouping in Cellular Cognitive Radio Networks (셀룰러 인지 라디오 망에서 스펙트럼 홀 그룹핑에 의한 인지 사용자의 서비스 품질향상)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.322-327
    • /
    • 2019
  • In this paper, we propose first a scheme of grouping spectrum holes that are created in the multiple channels of primary users, and then by using the scheme we enhance quality of service (QoS) of wideband cognitive radio users in cellular cognitive radio networks. In our scheme, spectrum holes created in each primary channel are predicted by Wiener prediction process, and then the predicted spectrum holes happened in the same time are grouped into a group. The wideband cognitive radio users explore the group of spectrum holes to improve their QoS. Simulation results show that their handoff calls dropping rate and initial calls blocking rate are significantly reduced in our scheme, compared to those in the single primary channel.

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

The Effect of Multiple Energy Detector on Evidence Theory Based Cooperative Spectrum Sensing Scheme for Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.295-309
    • /
    • 2016
  • Spectrum sensing is an essential function that enables cognitive radio technology to explore spectral holes and resourcefully access them without any harmful interference to the licenses user. Spectrum sensing done by a single node is highly affected by fading and shadowing. Thus, to overcome this, cooperative spectrum sensing was introduced. Currently, the advancements in multiple antennas have given a new dimension to cognitive radio research. In this paper, we propose a multiple energy detector for cooperative spectrum sensing schemes based on the evidence theory. Also, we propose a reporting mechanism for multiple energy detectors. With our proposed system, we show that a multiple energy detector using a cooperative spectrum sensing scheme based on evidence theory increases the reliability of the system, which ultimately increases the spectrum sensing and reduces the reporting time. Also in simulation results, we show the probability of error for the proposed system. Our simulation results show that our proposed system outperforms the conventional energy detector system.