• Title/Summary/Keyword: Multiple Cutouts

Search Result 6, Processing Time 0.017 seconds

Computation of structural intensity for plates with multiple cutouts

  • Khun, M.S.;Lee, H.P.;Lim, S.P.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.627-641
    • /
    • 2003
  • The structural intensity fields of rectangular plates with single cutout and multiple cutouts are studied. The main objective is to examine the effect of the presence of cutouts on the flow pattern of vibrational energy from the source to the sink on a rectangular plate. The computation of the structural intensity is carried out using the finite element method. The magnitude of energy flow is significantly larger at the edges on the plate near the cutout boundary parallel to the energy flow. The effects of cutouts with different shape and size at different positions on structural intensity of a rectangular plate are presented and discussed. A case study on a plate with two cutouts is also presented.

Multiple cutout optimization in composite plates using evolutionary structural optimization

  • Falzon, Brian G.;Steven, Grant P.;Xie, Mike Y.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.609-624
    • /
    • 1997
  • The optimization of cutouts in composite plates was investigated by implementing a procedure known as Evolutionary Structural Optimization. Perforations were introduced into a finite element mesh of the plate from which one or more cutouts of a predetermined size were evolved. In the examples presented, plates were rejected from around each evolving cutout based on a predefined rejection criterion. The limiting ply within each plate element around the cutout was determined based on the Tsai-Hill failure criterion. Finite element plates with values below the product of the average Tsai-Hill number and a rejection criterion were subsequently removed. This process was iterated until a steady state was reached and the rejection criterion was then incremented by an evolutionary rate and the above steps repeated until the desired cutout area was achieved. Various plates with differing lay-up and loading parameters were investigated to demonstrate the generality and robustness of this optimization procedure.

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.

Free Vibration Analysis of Rectangular Plate with Multiple Circular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 원형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1086-1092
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple circular holes. On the contrary to the case of rectangular plate with multiple rectangular holes, it is very difficult to perform qualitative analysis on natural vibration characteristics because of geometrical inconsistency. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a circular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Free Vibration Analysis of Rectangular Plate with Multiple Rectangular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.881-887
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple rectangular holes. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a rectangular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Shape Optimization in Laminated Composite Plates by Volume Control (최적 제어를 통한 복합적층판의 형상최적화)

  • 한석영;백춘호;박재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF