• Title/Summary/Keyword: Multiple Cracking

검색결과 93건 처리시간 0.203초

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

A Study on the Coating Cracking on a Substrate in Bending I : Theory (굽힘모드하에서의 코팅크랙킹의 분석 I : 이론)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.38-47
    • /
    • 2000
  • The coating cracking on a substrate system was analyzed using a fracture mechanics approach. Multiple cracking in the bending configuration was analyzed using a variational mechanics approach to fracture mechanics of coatin $g_strate system. The strain energy release rate on bending geometry developed permits the prediction of crack growth in the coating layer on a substrate. Also, it can be used appropriately to the characterization of multiple cracking of coating. The obtained critical strain energy release rate (in-situ fracture toughness) will be a material property of coating and it will provide a better insight into coating cracking.ng.

  • PDF

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

Mechanical Behavior of Anchorage Zones in Prestressed Concrete Members with Single and Closely-Spaced Anchorages (단일텐던 및 복수텐던이 설치된 프리스트레스트 콘크리트 부재의 정착부 거동 연구)

  • Oh, Byung Hwan;Lim, Dong Hwan;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제14권6호
    • /
    • pp.1329-1339
    • /
    • 1994
  • The purpose of present study is to explore the mechanical behavior of anchorage zones in prestressed concrete members with single and closely-spaced multiple tendon anchorages. The cracking loads and local stress distributions at these anchorage zones are studied. To this end, a series of experiments have been conducted. From this study, it is found that the failure of anchorage zones of the closely-spaced multiple tendon members is initiated by cracking along the tendon path and that the tensile stresses arising in the vicinity of anchorage zone of the first tendon are reduced due to additional compression of the second tendon. This results in the increase of cracking capacity of the member. The effects of multiple tendons are presented in the form of strain distribution and cracking load comparisons.

  • PDF

Nonlinear Analysis of Reinforced Concrete Members using Plasticity with Multiple Failure Criteria (다중 파괴기준의 소성모델을 이용한 철근콘크리트부재의 비선형 해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • 제7권5호
    • /
    • pp.145-154
    • /
    • 1995
  • Concrete has two different failure mechanisms : compressive crushing and tensile cracking. Concrete models should use the two different failure criteria to analyze the inelastic behavior of concrete including multiaxial crushing and tensile cracking. Concrete models used in this study are based on plasticity with multiple failure criteria of compressive crushing and tensile cracking. For tensile cracking behavior, two different plasticity models are investigated. The* ,e are rotating-crack and fixed-crack plasticity models, classified according to idealization of crack 0rientat:ions. The material models simplify inelastic behavior of concrete for plane stress problenls. The material models are used for the finite element anlaysis. Analytical results are compared with several experiments of reinforced concrete member. The advantages and disadva.ntages of rotating-crack and fixed -crack plasticity models are discussed.

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

The Integrity Verification of Tube-end Sleeve by ECT (와전류탐상검사에 의한 튜브엔드 슬리브 건전성 검증)

  • Kim, Su Jin;Kwon, Kyung Joo;Suk, Dong Hwa;Park, Ki Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • 제11권1호
    • /
    • pp.20-24
    • /
    • 2015
  • Steam generator(S/G) tubes in pressurized water reactor (PWR's) are subject to several types of degradation. This degradation includes denting, pitting, intergranular attack(IGA), intergranular stress corrosion cracking(IGSCC), fatigue, fretting and wear. Degradation can be derived from either the primary side(inside) or the secondary side(outside) of the tube. Recent issue for tube degradation in domestic steam generator is the tube end cracking on seal weld region. The seal weld region at the tube end and tube itself is regarded as a pressure boundary between the primary side and the secondary side. One of the Westinghouse Model-F S/G has experienced tube end cracking and its number of plugging approximately becomes to the operating limit up to 5% due to tube end cracking which was reported as SAI/MAI(single/multiple axial indication) or SCI/MCI(Single/multiple circumferential indication) from the results of eddy current testing. Eddy current mock-up test was carried out to determine the origin of cracking whether it is from weld zone area or parent tube. This result was helpful to analyze crack location on ECT data. Correct action on this problem was the installation of tube-end sleeve. Last year, after removing 340 installed plugs from tubes, selected 269 tubes took tube-end sleeve installation. Tube-end sleeve brought pressure boundary from parent tube to installed sleeve tube. Tube-end sleeve has the benefit of reducing outage period and increasing more revenue than replacing S/G. This paper is provided to assist interest parties in effectively understanding this issue.

Unified Method for Nonlinear Finite Element Analysis of RC Planar Members (통합방법을 이용한 철근콘크리트부재의 비선형 유한요소해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • 제9권2호
    • /
    • pp.133-144
    • /
    • 1997
  • Concrete plasticity models fol the analysis of reinforced concrete members in plane stress are studied. The proposed plasticity model for reinforced concrete provides a unified approach combining plasticity theory and damage models. It addresses strength mhancement under rnultiaxial compression. and tensile cracking damage. The model uses multiple failure criteria for compressive crushing and tensile cracking. For tensile cracking behavior. rotating-crack and fixed-crack plasticity models are compared. As crushing failure criterion, the Drucker-Prager and the von Mises models are used for comparison. The model uses now and existing damnge models fbr tension softening, tension stiffening. and compression softening dup to tensilt. cracking. Finite element analyses using the unified method are compatxd with existing rxpcrimcntal r.esults. To vei.ify the proposcd crushing and cracking plasticity models, the experiments have load capacities govc11.nc.d either by compressive crushing of'concrete or by yi~lding of' reinforcing steel.

Unified Constitutive Model for RC Planar Members Under Cyclic Load (주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델)

  • 김재요;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • 제14권2호
    • /
    • pp.239-248
    • /
    • 2002
  • A constitutive model unifying plasticity and crack damage mode)s was developed to address the cyclic behavior of reinforced concrete planar members. The stress of concrete in tension-compression was conceptually defined by the sum of the compressive stress developed by the strut-action of concrete and the tensile stresses developed by tensile cracking. The plasticity model with multiple failure criteria was used to describe the isotropic damage of compressive crushing affected by the anisotropic damage of tensile cracking. The concepts of the multiple fixed crack damage model and the plastic flow model of tensile cracking were used to describe the tensile stress-strain relationship of multi-directional cracks. This unified model can describe the behavioral characteristics of reinforced concrete in cyclic tension-compression conditions, i.e. multiple tensile crack orientations, progressively rotating crack damage, and compressive crushing of concrete. The proposed constitutive model was implemented to finite element analysis, and it was verified by comparison with existing experimental results from reinforced concrete shear panels and walls under cyclic load conditions.

A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers (마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구)

  • Kim Jae Hwan;Lee Eui Bae;Kim Yong Sun;Kim Yong Duk;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF