• Title/Summary/Keyword: Multilayer process

Search Result 300, Processing Time 0.032 seconds

Solvent Manufacturing Process Monitoring using Artificial Neural Networks

  • Lim, Chang-Gyoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.264-269
    • /
    • 2005
  • Advances in sensors, actuators, and computers and developments In information systems offer unprecedented opportunities to implement highly ambitious automation, control and decision strategies. There are also new challenges and demands for control and automation in modern industrial practices. There is a growing need for an active participation from the information systems in industrial, manufacturing and process industry environments because currently there are many control problems. This paper provides pattern recognition to the monitoring system for solvent manufacturing process and shows performance in real-time response with multiple input signals. Data is teamed by a multilayer feedforward network trained by error-backpropagation. The two kinds of test results show that the trained network has the ability to show the current system status with different input data sets.

Development of VLSI Process Simulator (반도체 공정 시뮬레이터 개발에 관한 연구)

  • 이경일;공성원;윤상호;이제희;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.40-45
    • /
    • 1994
  • The TCAD(Technology Computer Aided Design) software tool is a popular name to be able to simulate the semiconductor process and device circuit. We have developed a two-dimensional TCAD software tool included an editor, parser, each process unit, and 2D, 3D graphic routine that is Integrated Environment. The initial grid for numerical analysis is automatically generated with the geometric series that use the user default(given) line and position separated with grid interval and the nodes corresponding to each mesh point stoic the all the possible attribute. Also, we made a data structure called PIF for input or output. Methods of ion implantation in this paper arc Monte Carlo, Gaussian Pearson and Dual-Pearson. Analytical model such as Gaussian, Pearson and Dual-Pearson were considered the multilayer structure and two-dimensional tilted implantation. We simuttaneously calculated the continuity equation of impurity and point defect in diffusion simulation. Oxidation process was simulated by analytical ERFC(Complementary Error Function) model for local oxidation.

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

Bending Mode Multilayer Actuator Using Low Temperature Sintering Piezoelectric Ceramics (저온소결 세라믹을 이용한 밴더형 적층 액츄에이터의 제작)

  • Lee, Ju-Young;Kim, Sang-Jong;Kang, Chong-Yun;Kim, Hyun-Jai;Lee, Sang-Yoel;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.68-69
    • /
    • 2005
  • Low temperature ($\leq900^{\circ}C$) sintering piezoelectric ceramics $0.01Pb(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3-0.35PbTiO_3-0.23PbZrO_3+0.1wt%Y_2O_3+xwt%ZnO$ $(0{\leq}x{\leq}2.5)$ have been developed and investigated. The electromechanical coupling coefficient ($k_p$), piezoelectric constant ($d_{33}$), and mechanical quality factor ($Q_m$) have been measured to characterize the piezoelectric materials system. When 2.0 wt% ZnO is added, the properties of the system, $d_{33}$ = 559 pC/N, $k_p$ = 55.0 % and $Q_m$ = 73.4 are obtained which are very suitable for piezoelectric actuators. A bending mode multilayer actuator has been also developed using the materials which size is $27(L)\times9(W)\times1.07(t)mm^3$. The actuators are fabricated by multilayer ceramic (MLC) process and consist of24 layers and each layer thickness is $35{\mu}m$. At this time, the displacement of actuator was $100{\mu}m$ at 28V.

  • PDF

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

Pattern recognition of time series data based on the chaotic feature extracrtion (카오스 특징 추출에 의한 시계열 신호의 패턴인식)

  • 이호섭;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.294-297
    • /
    • 1996
  • This paper proposes the method to recognize of time series data based on the chaotic feature extraction. Features extract from time series data using the chaotic time series data analysis and the pattern recognition process is using a neural network classifier. In experiment, EEG(electroencephalograph) signals are extracted features by correlation dimension and Lyapunov experiments, and these features are classified by multilayer perceptron neural networks. Proposed chaotic feature extraction enhances recognition results from chaotic time series data.

  • PDF

Visible light emission from $C_60$ and Si nanoparticle film by laser process (C60 및 Si 초미립자 박막의 Laser 반응에 의한 가시광선발광)

  • ;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.598-601
    • /
    • 2000
  • We investigated the fabrication of Si nanoparticle and $C_{60}$ thin films by pulsed laser ablation. As a result, we observed visible green photoluminescence spectra in the Si/C$_{60}$ multilayer films after laser annealing. It is considered that this green photoluminescence is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ via laser annealing.ing.

  • PDF

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

YBa$_2$Cu$_3$O$_{7-{\delta}}$/SrTiO$_3$/YBa$_2$Cu$_3$O$_{7-{\delta}}$ multilayer structures for ground planes for ramp-edge junction devices

  • Kim, C.H.;Kim, Y.H.;Jung, K.R.;Hahn, T.S.;Park, J.H.;Choi, S.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.179-183
    • /
    • 2000
  • For a ground plane in high-temperature superconducting ramp-edge junction devices, YBa$_2$Cu$_3$O$_{7-{\delta}}$/SrTiO$_3$/YBa$_2$Cu$_3$O$_{7-{\delta}}$ multilayer structures were fabricated using pulsed laser deposition and ECR ion milling. Various process parameters were adjusted to enhance the device characteristics. By etching the STO layer to form a tapered edge of about 15$^{\circ}$ and in-situ RF plasma treatment of bottom YBCO surface prior to deposition of top YBCO, the top-to-bottom YBCO showed T$_c$ of 75${\sim}$80 K and I$_c$ of about 40 mA through holes. It was found that the deposition of bottom YBCO at a reduced laser repetition rate of 1Hz increased the T$_c$ of top YBCO to 79.9 K. The resistivity of 570 layer was about 10$^6$ ${\Omega}$cm at 60 K, which ensures good electrical isolation between successive YBCO layers.

  • PDF

Soft Lithographic Patterning Method for Flexible Graphene-based Chemical Sensors with Heaters

  • Kang, Min-a;Jung, Min Wook;Myung, Sung;Song, Wooseok;Lee, Sun Suk;Lim, Jongsun;Park, Chong-Yun;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.2-176.2
    • /
    • 2014
  • In this work, we demonstrated that the fabrication of flexible graphene-based chemical sensor with heaters by soft lithographic patterning method [1]. First, monolayer and multilayer graphene were prepared by thermal chemical vapor deposition transferred onto SiO2 / Si substrate in order to fabrication of patterned-sensor and -heater. Second, patterned-monolayer and multilayer graphene were detached through soft lithography process, which was transferred on top and bottom sides of PET film. Third, Au / Ti (Thickness : 100/30 nm) electrodes were deposited end of the patterned-graphene line by sputtering system. Finally, we measured sensor properties through injection of NO2 and CO2 gas on different temperature with voltage change of graphene heater.

  • PDF