• Title/Summary/Keyword: Multicopter

Search Result 41, Processing Time 0.03 seconds

Hybrid Communication System for Real-time Video Transmission of Multicopter (멀티콥터의 실시간 영상 전송을 위한 하이브리드 통신 방식)

  • Lee, Sun Yui;Park, Ji Ho;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.82-86
    • /
    • 2014
  • In this paper, we propose a novel modulation scheme specialized in real time broadcast system using a multicopter. Since multicopters have many advantages in aerial photography, they have been widely used in broadcasting technologies. However, because of restrictions on flight time, it is difficult to utilize multicopters in real time broadcasting systems. Therefore, video transmission using multicopter is necessary for low power communication techniques in air channel environment. Performance results of the hybrid modulation in this paper are compared to that of conventional modulations with Bit Error Rate (BER) and Signal to Noise Ratio (SNR) simulations. The results also showed that proposed system is suitable for aerial photography. Experiments demonstrated the superiority of the proposed modulation scheme by showing received symbols through an USRP equipment.

Development of Endurance Estimation Method for Multicopters Using Propeller Database (프로펠러 성능 시험 데이터베이스를 활용한 멀티콥터 체공시간 예측방법 개발)

  • Choi, Inseo;Han, Cheolhuei
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • The application of multicopters using a battery is limited by the short endurance due to the low energy density. A propeller is one of crucial components that determine the performance of the multicopter. In the present study, a systematic method for predicting the endurance of multicopters is described. Propeller performance database are constructed using the data from UIUC Propeller Data Site. Using the 'trendline' function of MS Excel software, the performance of the commercial propellers are represented as a function of polynomials. The multicopter's endurance is computed iteratively using Peukert's Law and considering the voltage drop effect. We evaluated the endurance of multicopters that use commercial propellers. The endurance of the multicopter was within the range of 28 min. to 36 min. It is expected that the present method can be utilized for optimal propeller selection for the given multicopters.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Development of Airframe Structure for Disaster and Public Safety Multicopter UAV (재난치안용 멀티콥터 무인기 기체구조 개발)

  • Shin, Jeong Woo;Lee, Seunggyu;Noh, Jeong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • Airframe structure development of the 35 kg class 'Disaster and Public Safety Multicopter' UAV is described in this paper. To reduce the airframe weight, T-700 grade CFRP composite material was used, and the fuselage was designed with the semi-monocoque structure and plate installed with the control and communication devices designed in a sandwich structure. The specimen tests for the laminated plate and pipe were conducted to verify the strength and stiffness of the designed parts. The stacking sequence of composite materials was determined by the static strength and vibration analysis, and landing gear strut was designed by the nonlinear analysis with decent speed and ground clearance requirements. The static strength test was performed to evaluate the structural integrity and to verify the landing gear behavior.

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

Multicopter System modeling using parameter estimation (파라미터 추정기법을 이용한 회전익 멀티로터 시스템 모델링)

  • Jo, Wan-Seok;Lee, Myeong-Hwa
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.26-29
    • /
    • 2016
  • 본 논문에서는 멀티로터 시스템의 모델리을 위한 방법으로 파라미터 추정법을 제시하였으며 이를 위해 실제 비행데이터를 이용한다. 파라미터 추정법으로는 예측오차 기법과 순화최소자승법이 사용되었고 그 결과를 나타내었다.

  • PDF

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Thrust and torque prediction of multicopter propeller in hovering based on BET method (BET 기법을 이용한 멀티콥터 프로펠러의 정지비행시 추력 및 토크 계산)

  • Lee, Bumsik;Woo, Heeseung;Lee, Dogyeong;Chang, Kyoungsik;Lee, Dongjin;Kim, Minwoo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.23-31
    • /
    • 2018
  • In the present work, the thrust and torque of multicopter propellers in hovering are predicted based on BET method. The geometry information of the propellers is obtained using a three dimensional scanner and the airfoil section is extracted using CATIA. EDISON CFD is adopted to calculate the drag and lift of airfoil at a given geometry and flow conditions and then thrust is calculated with respect to a given RPMs based on BET. Two simulations with laminar and turbulent flows are considered. The predicted value is compared with the performance data from the Product Company and results from JavaProp software, which is used in the design and prediction of propellers. In the case of a 9-inch propeller, the thrust from the product company is corresponding to the results between the laminar and turbulent flow conditions. In the 16-inch case, the predicted thrust at turbulent flow conditions conformed well with reference one. The predicted torque shows a big difference with the reference data.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

Performance analysis of Coaxial Propeller for Multicopter Type PAV (Personal Air Vehicle) (멀티콥터형 PAV(Personal Air Vehicle)의 동축반전 프로펠러에 대한 성능해석)

  • Kim, Young Tae;Park, Chang Hwan;Kim, Hak Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 2019
  • Performance analyses were performed on a propeller developed for use in a PAV (Personal Air Vehicle) under 600 kg Maximum Take-Off Weight (MTOW). The actuator disc theory and CFD analyses were used to estimate the hovering time with regards to MTOW variation for a given battery weight. The interference induced power factor kint was introduced to account for the effect of flow interference between the propellers and to estimate the performance of counter-rotating propellers. The Maximum Figure of Merit (FM) value of the propeller pitch was determined and the design RPM range for the required power inversely obtained from the CFD results. Previous research indicate that the flight time of large multi-copter is limited by the available battery energy density. Similarly, the propeller pitch settings and spacing are important factors in reducing the kint value.