• Title/Summary/Keyword: Multiclass Datasets

Search Result 13, Processing Time 0.021 seconds

Ensemble of Classifiers Constructed on Class-Oriented Attribute Reduction

  • Li, Min;Deng, Shaobo;Wang, Lei
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.360-376
    • /
    • 2020
  • Many heuristic attribute reduction algorithms have been proposed to find a single reduct that functions as the entire set of original attributes without loss of classification capability; however, the proposed reducts are not always perfect for these multiclass datasets. In this study, based on a probabilistic rough set model, we propose the class-oriented attribute reduction (COAR) algorithm, which separately finds a reduct for each target class. Thus, there is a strong dependence between a reduct and its target class. Consequently, we propose a type of ensemble constructed on a group of classifiers based on class-oriented reducts with a customized weighted majority voting strategy. We evaluated the performance of our proposed algorithm based on five real multiclass datasets. Experimental results confirm the superiority of the proposed method in terms of four general evaluation metrics.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles (나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택)

  • Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.372-377
    • /
    • 2008
  • Multiclass cancer classification has been actively investigated based on gene expression profiles, where it determines the type of cancer by analyzing the large amount of gene expression data collected by the DNA microarray technology. Since gene expression data include many genes not related to a target cancer, it is required to select informative genes in order to obtain highly accurate classification. Conventional rank-based gene selection methods often use ideal marker genes basically devised for binary classification, so it is difficult to directly apply them to multiclass classification. In this paper, we propose a novel method for multiclass gene selection, which does not use ideal marker genes but directly analyzes the distribution of gene expression. It measures the class-discriminability by discretizing gene expression levels into several regions and analyzing the frequency of training samples for each region, and then classifies samples by using the naive Bayes classifier. We have demonstrated the usefulness of the proposed method for various representative benchmark datasets of multiclass cancer classification.

New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation

  • Cho, Wanhyun;Kim, Sangkyoon;Park, Soonyoung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.202-208
    • /
    • 2015
  • In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.

EEG Feature Classification Based on Grip Strength for BCI Applications

  • Kim, Dong-Eun;Yu, Je-Hun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.277-282
    • /
    • 2015
  • Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.

Multiclass image expression classification (다중 클래스 이미지 표정 분류)

  • Oh, myung-ho;Min, song-ha;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.701-703
    • /
    • 2022
  • In this paper, we present a multi-class image scene classification method based on map learning. We were able to learn from the convolutional neural network model in the dataset, classify facial scene images of multiclass people, and classify the optimized CNN model into the Google image dataset in the experiment with significant results.

  • PDF

Image Scene Classification of Multiclass (다중 클래스의 이미지 장면 분류)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.551-552
    • /
    • 2021
  • In this paper, we present a multi-class image scene classification method based on transformation learning. ImageNet classifies multiple classes of natural scene images by relying on pre-trained network models on large image datasets. In the experiment, we obtained excellent results by classifying the optimized ResNet model on Kaggle's Intel Image Classification data set.

  • PDF

A multi-dimensional crime spatial pattern analysis and prediction model based on classification

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.272-287
    • /
    • 2021
  • This article presents a multi-dimensional spatial pattern analysis of crime events in San Francisco. Our analysis includes the impact of spatial resolution on hotspot identification, temporal effects in crime spatial patterns, and relationships between various crime categories. In this work, crime prediction is viewed as a classification problem. When predictions for a particular category are made, a binary classification-based model is framed, and when all categories are considered for analysis, a multiclass model is formulated. The proposed crime-prediction model (HotBlock) utilizes spatiotemporal analysis for predicting crime in a fixed spatial region over a period of time. It is robust under variation of model parameters. HotBlock's results are compared with baseline real-world crime datasets. It is found that the proposed model outperforms the standard DeepCrime model in most cases.

The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning (Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

A Genetic Algorithm-based Classifier Ensemble Optimization for Activity Recognition in Smart Homes

  • Fatima, Iram;Fahim, Muhammad;Lee, Young-Koo;Lee, Sungyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2853-2873
    • /
    • 2013
  • Over the last few years, one of the most common purposes of smart homes is to provide human centric services in the domain of u-healthcare by analyzing inhabitants' daily living. Currently, the major challenges in activity recognition include the reliability of prediction of each classifier as they differ according to smart homes characteristics. Smart homes indicate variation in terms of performed activities, deployed sensors, environment settings, and inhabitants' characteristics. It is not possible that one classifier always performs better than all the other classifiers for every possible situation. This observation has motivated towards combining multiple classifiers to take advantage of their complementary performance for high accuracy. Therefore, in this paper, a method for activity recognition is proposed by optimizing the output of multiple classifiers with Genetic Algorithm (GA). Our proposed method combines the measurement level output of different classifiers for each activity class to make up the ensemble. For the evaluation of the proposed method, experiments are performed on three real datasets from CASAS smart home. The results show that our method systematically outperforms single classifier and traditional multiclass models. The significant improvement is achieved from 0.82 to 0.90 in the F-measures of recognized activities as compare to existing methods.