• Title/Summary/Keyword: Multibody dynamic

Search Result 293, Processing Time 0.026 seconds

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Study on Multibody Dynamic Analysis and Durability of Heavy Load Bucket Roller Chain System (고하중용 버킷 롤러체인 시스템의 다물체 동역학 해석 및 내구성 연구)

  • Kim, Chang Uk;Park, Jin Chul;Lee, Dong Woo;Song, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.

A Non-recursive Formulation of Dynamic Force Analysis in Recursive Multibody Dynamics (순환 다물체동역학에서의 비순환적인 동하중해석 공식)

  • Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.809-818
    • /
    • 1997
  • An efficient non-recursive formulation of dynamic force analysis has been developed for serially connected multibody systems. Although derivation of equations of motion is based on a recursive dynamic formulation with joint relative coordinates, in the proposed formulation, dynamic forces such as joint reaction forces and driving force are computed non-recursively for specified joints. The efficiency of the proposed formulation has been proved by the operational count and the CPU time measure, comparing with that of the conventional recursive Newton-Euler formulation. A simulation of 7-DOF RRC robot arm has been carried out to validate solutions of reaction forces by comparing with those from a commercial dynamic analysis program DADS.

Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method (가상시험법을 이용한 알루미늄 너클의 내구수명 평가)

  • Ko, Han-Young;Choi, Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Inverse Dynamic Analysis of Constrained Multibody Systems Considering Friction Forces on Kinematic Joints (기구학적 조인트에서 마찰력을 고려한 구속 다물체계의 역동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2050-2058
    • /
    • 2000
  • A method for the inverse dynamic analysis of constrained multibody systems considering friction forces acting on kinematic joints is presented in this paper. The stiction and the sliding which represent zero and non-zero relative motions are considered during the inverse dynamic analysis. Actuating forces to control the position or the orientation of constrained multibody systems are usually calculated in the inverse dynamic analysis. An iterative procedure need to be employed to calculate the actuating forces when the friction is considered. Furthermore, the actuating forces are not uniquely determined during the stiction. These difficulties are resolved by the method presented in this paper.

Analysis on Dynamic Characteristics of Power Transmission System Using Multibody Dynamics (다물체계 해석 방법을 이용한 동력 전달계의 특성 해석)

  • 우민수;공진형;한형석;임원식;박영일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.476-480
    • /
    • 2003
  • This paper presents an effective method to analyze the dynamic characteristics for the shilling transients of power transmission system using the multibody dynamics, which is composed of subsystem equation, subsystem assemble, and the self-determining technique for the system degree of freedom. Using the advantages of multibody dynamics, the proposed method can be used easily for mathematical models of mechanical systems, such as a power transmission, compared with newtonian method. With this theory, dynamic simulation program was developed. The program can be used to verify system performances, transient phenomena, and other dynamic problems. The simulation of a target system was presented, and its validity was attained by being compared with the previous analysis using newtonian method.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method (등가정하중을 이용한 유연다물체 동역학계의 구조최적설계)

  • 강병수;박경진
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.