• 제목/요약/키워드: Multibody Mechanical System

검색결과 138건 처리시간 0.023초

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

상대이음좌표방법을 이용한 다물체 시스템의 동역학적 해석에 관한 연구 (A Study on the Dynamic Analysis of Multibody System by the Relative Joint Coordinate Method)

  • 이동찬;배대성;한창수
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1974-1984
    • /
    • 1994
  • This paper presents a relative coordinate formulation for constrained mechanical systems. Relative coordinates are defined along degrees of freedom of a joint. Graph theoretic analyses are performed to identify topological paths in mechanical systems. Cut constraints are generated to handle closed loop systems. Equations of motion are derived in the Cartesian space and transformed to the joint space. Relative generalized coordinates are corrected to satisfy the cut constraints by a parametrizatiom method.

Analysis of landing mission phases for robotic exploration on phobos mar's moon

  • Stio, A.;Spinolo, P.;Carrera, E.;Augello, R.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.529-541
    • /
    • 2017
  • Landing phase is one of the crucial and most important phases during robotic aerospace explorations. It concerns the impact of the landing module of a spacecraft on a celestial body. Risks and uncertainties of landing are mainly due to the morphology of the surface, the possible presence of rocks and other obstacles or subsidence. The present work quotes results of a computational analysis direct to investigate the stability during the landing phase of a lander on Phobos, a Mars Moon. The present study makes use of available software tools for the simulation analyses and results processing. Due to the nature of the system under consideration (i.e., large displacements and interaction between several systems), multibody simulations were performed to analyze the lander's behavior after the impact with the celestial body. The landing scenario was chosen as a result of a DOE (Design of Experiments) analysis in terms of lander velocity and position, or ground slope. In order to verify the reliability of the present multibody methodology for this particular aerospace issue, two different software tools were employed in order to emphasize two different ways to simulate the crash-box, a particular component of the system used to cushion the impact. The results show the most important frames of the simulations so as to provide a general idea about how lander behaves in its descent and some trends of the main characteristics of the system. In conclusion, the success of the approach is demonstrated by highlighting that the results (crash-box shortening trend and lander's kinetic energy) are comparable between the two tools and that the stability is ensured.

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.

다항식 근사를 이용한 이족보행 로봇의 보행패턴 생성 (Walking Pattern Generation for a Biped Robot Using Polynomial Approximation)

  • 강윤석;박정훈;임홍재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.567-572
    • /
    • 2004
  • In this research, a stable walking pattern generation method for a biped robot is presented. A biped robot is considered as constrained multibody system by several kinematic joints. The proposed method is based on the optimized polynomial approximation of the trunk motion along the moving direction. Foot motions can be designed according to the ground condition and walking speed. To minimize the deviation from the desired ZMP, the trunk motion is generated by the fifth order polynomial approximation. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

  • PDF

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

규정된 동특성을 만족하기 위한 회로차단기의 최적설계 (Optimal Design of a Circuit Breaker for Satisfying the Specified Dynamic Characteristics)

  • 안길영;조상순;오일성;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.859-864
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.