• 제목/요약/키워드: MultiLayer Perceptron

검색결과 444건 처리시간 0.026초

Segmentation of Objects with Multi Layer Perceptron by Using Informations of Window

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.1033-1043
    • /
    • 2007
  • The multi layer perceptron for segmenting objects in images only uses the input windows that are made from a image in a fixed size. These windows are recognized so each independent learning data that they make the performance of the multi layer perceptron poor. The poor performance is caused by not considering the position information and effect of input windows in input images. So we propose a new approach to add the position information and effect of input windows to the multi layer perceptron#s input layer. Our new approach improves the performance as well as the learning time in the multi layer perceptron. In our experiment, we can find our new algorithm good.

  • PDF

다층 신경망과 피부색 모델을 이용한 피부 영역 검출 (Skin Region Extraction Using Multi-Layer Neural Network and Skin-Color Model)

  • 박성욱;박종욱
    • 한국산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.31-38
    • /
    • 2011
  • 피부색은 자동화된 얼굴 인식을 위한 매우 중요한 정보 중의 하나이다. 본 논문에서는 다층 신경망(Multi-Layer Perceptron)을 이용한 피부 영역 검출 기법을 제안하였다. 제안된 방법은 적응적 조명 보정 기법을 통해 피부색 영역의 검출 성능을 개선하였고, 전처리 필터를 적용하여 피부색이 아닌 영역을 먼저 제거시킴으로써 처리 속도를 향상시켰다. 제안된 방법의 실험 결과 기존의 방법과 비교하여 보다 우수한 검출 결과를 나타냈으며, 처리 속도 또한 약 31~49% 향상시킬 수 있었다.

오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색 (Searching a global optimum by stochastic perturbation in error back-propagation algorithm)

  • 김삼근;민창우;김명원
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

시선 깊이 추정 기법을 이용한 OST-HMD 자동 스위칭 방법 (Method for Automatic Switching Screen of OST-HMD using Gaze Depth Estimation)

  • 이영호;신춘성
    • 스마트미디어저널
    • /
    • 제7권1호
    • /
    • pp.31-36
    • /
    • 2018
  • 본 논문에서는 시선 깊이 추정 기술을 이용한 OST-HMD의 자동화면 on/off 기능을 제안한다. 제안하는 방법은 MLP(Multi-layer Perceptron)을 이용하여 사용자의 시선 정보와 보는 물체의 거리를 학습 한 후, 시선 정보만 입력하여 거리를 추정한다. 학습 단계에서는 착용 할 수 있는 양안 추적기를 사용하여 시선 관련 특징을 얻는다. 그런 다음 이 특징을 다층 퍼셉트론 (MLP: Multi-layer Perceptron)에 입력하여 학습하고 모델을 생성한다. 추론 단계에서는 안구 추적기로부터 실시간으로 시선 관련 특징을 얻고 이를 MLP에 입력하여 추정 깊이 값을 얻는다. 마지막으로 HMD의 화면을 켜거나 끌 것인지 여부를 결정하기 위해 이 계산결과를 활용한다. 제안된 방법의 가능성을 평가하기 위해 프로토타입을 구현하고 실험을 수행하였다.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.51-59
    • /
    • 2019
  • 웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

VQ와 Multi-layer perceptron을 이용한 단모음 인식에 관한 연구 (A Study on Single Vowels Recognition using VQ and Multi-layer Perceptron)

  • 안태옥;이상훈;김순협
    • 한국음향학회지
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 1993
  • 본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.

  • PDF

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • 제12권1호
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

다층퍼셉트론 인공신경망을 이용한 저장탱크 슬로싱해석 (A Sloshing Analysis of Storage Tank using Multi-layer Perceptron Artificial Neural Network)

  • 김현수;이영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.491-496
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as aircraft. cars and liquid rocket and so on. This sloshing effect could be a severe problem in vehicle stability and control. So, various baffles are used in order to reduce the sloshing. The Lagrangian, Eulerian and ALE numerical method is widely used on the analysis of sloshing presently. But, these numerical methods are needed so many CPU time. In this study, for the reduction of the sloshing analysis time, me multi.layer perceptron artificial neural network is introduced and analysis results are presented.

  • PDF

다목적 비디오 부/복호화를 위한 다층 퍼셉트론 기반 삼항 트리 분할 결정 방법 (Multi-Layer Perceptron Based Ternary Tree Partitioning Decision Method for Versatile Video Coding)

  • 이태식;전동산
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.783-792
    • /
    • 2022
  • Versatile Video Coding (VVC) is the latest video coding standard, which had been developed by the Joint Video Experts Team (JVET) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal block structures during the encoding process. In this paper, we propose a fast ternary tree decision method using two neural networks with 7 nodes as input vector based on the multi-layer perceptron structure, names STH-NN and STV-NN. As a training result of neural network, the STH-NN and STV-NN achieved accuracies of 85% and 91%, respectively. Experimental results show that the proposed method reduces the encoding complexity up to 25% with unnoticeable coding loss compared to the VVC test model (VTM).