• Title/Summary/Keyword: Multi-walled Carbon Nanotube

Search Result 283, Processing Time 0.025 seconds

Thermal and Electrical Properties of Polyacrylate/Carbon Nanotube Composite Sheet (폴리아크릴레이트/카본나노튜브 복합체 시트의 열적.전기적 성질)

  • Choi, A.Y.;Yoon, K.H.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.231-236
    • /
    • 2011
  • The polyacrylate/multi-walled carbon nanotube (MWNT) composites were prepared and investigated for the application as a counter electrode in solar cell. The electrical conductivity of the composites was increased with increasing MWNT content and with the thickness of the sheet. The surface resistivity value of the composite at 50 wt% loading of MWNT was 0.36 ${\Omega}$/sq. The thermal decomposition temperature of the composites was also increased with the MWNT contents, and the increase of $15^{\circ}C$ was observed at the composite of polyacrylate/MWNT (50/50, w/w). The increase of storage modulus of the composites was observed, especially at the higher temperature compared to polyacrylate. The dimensional change of polyacrylate decreased over $20^{\circ}C$, but that of the composite increased linearly with the temperature. The morphology of the composites stands for the good dispersion of MWNT into the polyacrylate matrix.

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdeldjebbar;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.

A Study on Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조를 갖는 전자기파 흡수체에 관한 연구)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kim, Chun-Gon;Lee, In;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.64-71
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band ($8.2{\sim}12.4GHz$) frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane(PU) foams containing multi-walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

Gas Permeation Properties of PEO/EVA/MWCNT Composite Membranes (PEO/EVA/MWCNT 복합막을 통한 기체투과 성질)

  • Kang, Min Ji;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.556-564
    • /
    • 2018
  • In this study, polyethylene oxide (PEO)/polyethylene-co-vinyl acetate (EVA)/multi-walled carbon nanotube (MWCNT)-COOH composite membranes were prepared by adding 1, 2, 3, and 5 wt% of MWCNT-COOH to PEO/EVA respectively. The gas permeation properties of $N_2$, $O_2$ and $CO_2$ at $30^{\circ}C$ and 4~8 bar pressure were investigated. In each PEO/EVA/MWCNT-COOH composite membranes, the permeability of $CO_2$ increased with increasing the pressure, but the permeability of $N_2$ and $O_2$ were independent of the feeding pressure. As the MWCNT-COOH content increased, the $CO_2$ permeability increased and then decreased above 2 wt% MWCNT-COOH content. The 2 wt% MWCNT-COOH composite membrane exhibited a $CO_2/N_2$ selectivity of 77.8 and a $CO_2$ permeability of 84 barrer at 8 bar. The high $CO_2/N_2$ selectivity and $CO_2$ permeability were due to the high affinity between the quadrupolar $CO_2$, polar ether groups of PEO, and the polar ester groups of EVA. Additionally, the strong affinity between $CO_2$ and the -COOH groups on the MWCNT surface contributed to the high permeability of $CO_2$.

Rheological Properties and Foaming Behaviors of Modified PP/Nano-filler Composites (개질 폴리프로필렌/나노필러 복합체의 유변학적 특성 및 발포거동)

  • Yoon, Kyung Hwa;Lee, Jong Won;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.494-499
    • /
    • 2013
  • Modified polypropylene (m-PP) was fabricated by furfuryl sulphide (FS) as branching agent and m-PP/nano-filler composites were prepared with silicate and multi-walled carbon nanotube (MWCNT), using a twin screw extruder. The chemical structures and thermal properties of the m-PP were investigated by FTIR and DSC. The chemical structure of the m-PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no district change in melting temperature in case of m-PP, but a certain increase in crystallization temperature was notified and the increase was in the range of $10-20^{\circ}C$. The rheological properties, filler dispersion and foaming behaviors of the m-PP/nano-filler composites were investigated by dynamic rheometer, X-ray diffractometer (XRD) and scanning/transmission electron microscope (SEM/TEM). m-PP/nano-filler composites showed a high complex viscosity at a low frequency, an increase in melt elasticity, and a high shear thinning effect. Compared to pure PP, m-PP and m-PP/nano-filler composites were sufficient to enhance the foaming behavior.

Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing (마찰교반공정에 의한 AZ31/CNT 표면 복합재료 제조)

  • Kim, Jae-Yeon;Lee, Seung-Mi;Hwang, Jung-Woo;Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Friction stir processing (FSP) was applied to fabricate AZ31/CNT (Carbon Nano Tube) surface composite for improvement of surface hardness of AZ31 Mg-based alloy. The effects of traverse speed of rotating tool and volume fraction of CNT (i.e., groove depth of 3 mm and 4 mm) on the soundness and hardness of the composite layer were investigated. Multi-walled CNTs were fully filled in a machined groove and stirring tool was rotated at the speed of 1400 rpm. Only under the tool traverse speed of 25 mm/min for the specimen with a groove depth of 3 mm, surface composite layer with no defect was successfully produced. Increased hardness of about 35% was observed in the composite layer.

The Photodegradation Effect of Organic Dye for Metal Oxide (Cr2O3, MgO and V2O3) Treated CNT/TiO2 Composites

  • Chen, Ming-Liang;Bae, Jang-Soon;Yoon, Hee-Seung;Lim, Chang-Sung;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.815-820
    • /
    • 2011
  • Three kinds of organometallic compounds (chromium acetylacetonate, magnesium acetate and vanadyl acetylacetonate) were used as transition metal precursor, titanium n-butoxide and multi-walled carbon nanotube as titanium and carbon precursor to prepare metal oxide-CNT/$TiO^2$ composites. The surface properties and morphology of metal oxide-CNT/$TiO^2$ composites were by Brauer-Emett-Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The photocatalytic activity of prepared metal oxide-CNT/$TiO^2$ composites was determined by the degradation effect of methylene blue in an aqueous solution under irradiation of visible light.

Synthesis Long Multi-Walled Carbon Nanotubes by Water-Assisted Thermal-CVD (물 첨가 열화학기상증착을 이용하여 긴 다중벽 탄소나노튜브의 합성)

  • Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.220-220
    • /
    • 2008
  • 물 첨가 열화학기상증착을 이용하여 750도에서 길고 수직 성장한 다중벽 탄소나노튜브를 합성하였다. 사용된 기판으로는 우선 실리콘 웨이퍼에 열 증착기로 확산 방지층으로 Ti 50 nm를 입히고 그 위에 Al 15 nm를 입히고 난 후 촉매 층으로 Invar 36 (63 wt% Fe, 37 wt% Ni)을 1 nm 얇게 증착하였다. 탄소나노튜브의 성장에 사용된 가스는 Ar, $C_2H_2$ 이다. Ar은 분위기 가스로 사용되었고, $C_2H_2$는 탄소나노튜브의 성장에 관여하는 가스이다. 또한, 합성중에 약간의 물을 첨가함으로 기존의 탄소나노튜브 성장 길이보다 10배 가량 더 성장 하였다. 이것은 합성 중의 물 첨가로 인해 촉매 입자들의 활동성이 기존에 비해 더 증가했다는 것을 보여준다. 합성된 탄소나노튜브의 길이와 정렬도를 보기 위해 주사전자현미경 (scanning electron microscopy, SEM)을 이용하였고, 탄소나노튜브의 지름과 벽의 개수를 파악하기 위해 투과전자현미경 (transmission electron microscopy)을 이용하였다.

  • PDF

Preparation of Carbon-$TiO_2$ Composites by Using Different Carbon Sources with Titanium n-Butoxide and Their Photocatalytic Activity (여러 가지 탄소 전구체와 TNB를 이용하여 탄소-$TiO_2$ 복합체를 제조 및 그들의 광촉매 특성)

  • Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • We used activated carbon (AC), activated carbon fiber (ACF) and multi-walled carbon nanotube (MWCNT) as carbon sources and titanium n-butoxide as titanium source to prepare carbon-$TiO_2$ composites. For characterization their properties, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) were used. And the photoactivity of the carbon-$TiO_2$ composites, under UV irradiation, was tested using the fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in aqueous solution. After UV irradiation for a certain time, the concentration of MB solution was determined by UV-vis absorption spectroscopy.