Browse > Article
http://dx.doi.org/10.14478/ace.2018.1047

Gas Permeation Properties of PEO/EVA/MWCNT Composite Membranes  

Kang, Min Ji (Department of Industrial Chemistry, Sangmyung University)
Hong, Se Ryeong (Kyedang College of General Education Studies, Sangmyung University)
Publication Information
Applied Chemistry for Engineering / v.29, no.5, 2018 , pp. 556-564 More about this Journal
Abstract
In this study, polyethylene oxide (PEO)/polyethylene-co-vinyl acetate (EVA)/multi-walled carbon nanotube (MWCNT)-COOH composite membranes were prepared by adding 1, 2, 3, and 5 wt% of MWCNT-COOH to PEO/EVA respectively. The gas permeation properties of $N_2$, $O_2$ and $CO_2$ at $30^{\circ}C$ and 4~8 bar pressure were investigated. In each PEO/EVA/MWCNT-COOH composite membranes, the permeability of $CO_2$ increased with increasing the pressure, but the permeability of $N_2$ and $O_2$ were independent of the feeding pressure. As the MWCNT-COOH content increased, the $CO_2$ permeability increased and then decreased above 2 wt% MWCNT-COOH content. The 2 wt% MWCNT-COOH composite membrane exhibited a $CO_2/N_2$ selectivity of 77.8 and a $CO_2$ permeability of 84 barrer at 8 bar. The high $CO_2/N_2$ selectivity and $CO_2$ permeability were due to the high affinity between the quadrupolar $CO_2$, polar ether groups of PEO, and the polar ester groups of EVA. Additionally, the strong affinity between $CO_2$ and the -COOH groups on the MWCNT surface contributed to the high permeability of $CO_2$.
Keywords
PEO; EVA; MWCNT-COOH; permeability; selectivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. A. Hashemifard, A. F. Ismail, and T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation, J. Colloid Interface Sci., 359, 359-370 (2011).   DOI
2 L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).   DOI
3 S. Cimmino, E. Martuscelli, M. Saviano, and C. Silvestre, Miscibility of poly(ethylene oxide)/poly(ethylene-co-vinyl acetate) blends: simulation of phase diagram, Polymer, 32, 1461-1467 (1991).   DOI
4 F. T. Simon and J. M. Rutherford, Crystallization and melting behavior of polyethylene oxide copolymers, J. Appl. Phys., 35, 82-86 (1964).   DOI
5 C. K. Yeom, J. M. Lee, Y. T. Hong, K. Y. Choi, and S. C. Kim, Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus, J. Membr. Sci., 166, 71-83 (2000).   DOI
6 J. Jin, M. Song, and F. Pan, A DSC study of effect of carbon nanotubes on crystallisation behaviour of poly(ethylene oxide), Thermochim. Acta, 456, 25-31 (2007).   DOI
7 M. S. Tehrani, P. A. Azar, P. E. Namin, and S. M. Dehaghi, Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris(2-aminoethyl)amine, J. Environ. Prot., 4, 529-536 (2013).   DOI
8 C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, UK (1873).
9 R. M. Barrer, J. A. Barrie, and M. G. Rogers, Heterogeneous membranes: diffusion in filled rubber, J. Polym. Sci. A, 1, 2565-2586 (1963).
10 T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32, 483-507 (2007).   DOI
11 T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, Effect of nanoparticles on gas sorption and transport in poly(1-trimethyl-1-propyne), Macromolecules, 36, 6844-6855 (2003).   DOI
12 F. Aviles, J. V. C. Rodriguez, L. M. Tah, A. M. Pat, and R. V. Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, 47, 2970-2975 (2009).   DOI
13 S. A. Mousavi, M. Sadeghi, M. M. Y. M. Hashemi, M. P. Chenar, R. R. Azad, and M. Sadeghi, Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method, Sep. Purif. Technol., 62, 642-647 (2008).   DOI
14 H. Lin and B. D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci., 239, 105-117 (2004).   DOI
15 B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, The state of art of membrane technology for separation of carbon dioxide from flue gas, Korea Ind. Chem. (KIC) News, 14, 1 (2011).
16 H. Lin and B. D. Freeman, Materials selection guidelines for membranes that remove $CO_2$ from gas mixtures, J. Mol. Struct., 739, 57-74 (2005).   DOI
17 K. Okamoto, N. Umeo, S. Okamyo, K. Tanaka, and H. Kita, Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes, Chem. Lett., 22, 225-228 (1993).   DOI
18 K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, Gas permeation properties of poly(ether imide) segmented copolymers, Macromolecules, 28, 6950-6956 (1995).   DOI
19 Y. J. Shur and B. Ranby, Gas permeation of polymer blends. I. PVC/Ethylene-vinyl acetate copolymer (EVA), J. Appl. Polym. Sci., 19, 1337-1346 (1975).   DOI
20 H. K. Lee and M. J. Kang, Gas separation properties of poly(ethylene oxide) and poly(ethylene-co-vinyl acetate) blended membranes, Membr. J., 27(2), 147-153 (2017).   DOI
21 A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, Gas separation performance of plyethersulfone/multi-walled carbon nanotubes mixed matrix membranes, Sep. Purif. Technol., 80, 20-31 (2011).   DOI
22 K. W. Park and G. H. Kim, Ethylene vinyl acetate copolymer (EVA)/multiwalled carbon nanotube (MWCNT) nanocomposite foams, J. Appl. Polym. Sci., 112, 1845-1849 (2009).   DOI
23 H. Cong, J. Zhang, M. Radosz, and Y. Shen, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation, J. Membr. Sci., 294, 178-185 (2007).   DOI
24 M. A. Aroon, A. F. Ismail, M. M. M. Rahmati, and T. Matsuura, Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes, J. Membr. Sci., 364, 309-317 (2010).   DOI
25 R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 49, 6530-6538 (2010).   DOI
26 S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, and Z. Jiang, Pebax-PEG-MWCNT hybrid membranes with enhanced $CO_2$ capture properties, J. Membr. Sci., 460, 62-70 (2014).   DOI
27 C. H. Hong, D. S. Han, and B. U. Nam, Synthesis of multi-walled Carbon nanotube/poly(ethylene oxide) hybrids, Polymer (Korea), 34, 198-201 (2010).   DOI
28 L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol., 78, 76-82 (2011).   DOI
29 H. W. Yoon, H. D. Lee, and H. B. Park, Gas transport behavior of modified carbon nanotubes/hydrogel composite membranes, Membr. J., 23(5), 375-383 (2013).
30 C. A. Scholes, K. H. Smith, S. E. Kentish, and G. W. Stevens, $CO_2$ capture from pre-combustion processes-strategies for membrane gas separation, Int. J. Greenhouse Gas Control, 4, 739-755 (2010).   DOI
31 P. Bernardo, E. Drioli, and G. Golemme, Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res., 48, 4638-4663 (2009).   DOI
32 A. W. Grabczyk, P. Kubica, and A. Jankowski, Effect of the acetate group content on gas permeation through membranes based on poly(ethylene-co-vinyl acetate) and its blends, J. Membr. Sci., 443, 227-236 (2013).   DOI
33 R. W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393-1411 (2002).   DOI
34 B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999).   DOI
35 5. Y. Shen and A. C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler( fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chem. Eng. J., 192, 201-210 (2012).   DOI
36 R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014).   DOI
37 A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes, Sep. Purif. Technol., 80, 20-31 (2011).   DOI
38 M. Nour, K. Berean, S. Balendhran, J. Z. Ou, J. D. Pessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K. K. Zadeh, CNT/PDMS composite membranes for $H_2$ and $CH_4$ gas separation, Int. J. Hydrogen Energy, 38, 10494-10501 (2013).   DOI