• Title/Summary/Keyword: Multi-wall

Search Result 614, Processing Time 0.022 seconds

A Self-contained Wall Climbing Robot with Closed Link Mechanism

  • Park, Hyoukryeol;Park, Jaejun;Taehun Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.573-581
    • /
    • 2004
  • A self-contained wall climbing robot, called MRWALLSPECT (Multi-functional Robot for WALL inSPECTion) II, is developed. It is designed for scanning external surfaces of gas or oil tanks with small curvature in order to find defects. The robot contains all the components for navigation in itself without any external tether cable. Although it takes the basic structure of the sliding body mechanism, the robot has its original characteristic features in the kinematic design with closed link mechanism, which is enabled by adopting a simple and robust gait pattern mimicking a biological system. By employing the proposed link mechanism, the number of actuators is reduced and high force-to-weight ratio is achieved. This paper describes its mechanism design and the overall features including hardware and software components. Also, the preliminary results of experiments are given for evaluating its performances.

Effect of Wall Thinning on the Failure of Pipes Subjected to Bending Load (굽힘하중을 받는 배관의 파손에 미치는 감육의 영향)

  • Ahn Seok-Hwan;Nam Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.606-613
    • /
    • 2005
  • Effects of circumferentially local wall thinning on the fracture behavior of pipes were investigated by monotonic four-point bending. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area included an eroded ratio of d/t= 0.2, 0.5, 0.6, and 0.8, and an eroded length of ${\ell}\;=10mm,$ 25mm, and 120mm. Fracture type could be classified into ovalization, local buckling, and crack initiation depending on the eroded length and eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors excepting failure due to cracking. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

Large-Eddy Simulation of a Turbulent Obstacle Flow at a High Reynolds Number (높은 레이놀즈수에서의 난류 장애물유동의 Large-Eddy-Simulation)

  • 양경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1866-1872
    • /
    • 1994
  • Turbulent flow in a channel with a square rib periodically mounted on one wall is studied by large-eddy simulation(LES). An efficient 3D Navier-Stokes solver has been written for this geometry using a fractional step method and a multi-grid technique. The Reynolds number considered is 82, 000 based on the mean velocity above the obstacle height. Near-wall turbulence is approximated by a wall-layer model based on the turbulence intensity at the grid point nearest a solid wall. The results show a good qualitative agreement with experiments currently available for a single rib, indicating that LES can be a useful tool in simulating complex turbulent flows.

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Combustion synthesis of carbon nanotubes using their self-catalytic behavior (자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구)

  • Woo, Sang-Kil;Hong, Young-Taek;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF

AN ACCURATE AND EFFICIENT CALCULATION OF HIGH ENTHALPY FLOWS USING A HIGH ORDER NEW LIMITING PROCESS

  • Noh, Sung-Jun;Lee, Kyung-Rock;Park, Jung-Ho;Kim, Kyu-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.67-82
    • /
    • 2011
  • Calculation of accurate wall heat flux for high enthalpy flows requires a dense grid system, which leads to significantly large computational time. A high-order scheme can improve the efficiency of calculation because wall heat flux can be obtained accurately even with a relatively coarse grid system. However, conventional high order schemes have some drawbacks such as oscillations near a discontinuity and instability in multi-dimensional problem. To resolve these problems, enhanced Multi-dimensional Limiting Process(e-MLP) was applied as a high-order scheme. It could provide robust and accurate solutions with high order accuracy in calculation of high enthalpy flows within a short time. We could confirm the efficiency of the high order e-MLP scheme through grid convergence tests with different grid densities in a hypersonic blunt nose problem.

Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes (탄소성 금속관 내 가스 폭굉의 수치적 연구)

  • Gwak, Min-cheol;Do, Yeong-dea;Park, Jeong-su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

Multi-level Protection Infrastructure for Virus Protection (다단계 바이러스 차단 구조 연구)

  • 노시춘;김귀남
    • Proceedings of the Korea Information Assurance Society Conference
    • /
    • 2004.05a
    • /
    • pp.187-198
    • /
    • 2004
  • Virus protection infrastructure management is network infrastructure management, traffic route management, virus protection zone expansion, and virus protection management for gateway area. This research paper provides a diagnosis of characteristics and weaknesses of the structure of existing virus protection infrastructure, and recommends an improved multi-level virus protection infrastructure as a measure for correcting these weaknesses. Unproved virus protection infrastructure fitters unnecessary mail at the gateway stage to reduce the toad on server. As a result, number of transmission accumulation decreases due to the reduction in the CPU load on the Virus wall and increase in virus treatment rate.

  • PDF

A Study on the Behavior of Multi-tiered Reinforced Earth Retaining Wall (다단식 보강토 옹벽의 거동특성 연구)

  • 유한규;한석준;박언상
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.83-94
    • /
    • 2001
  • 본 연구에서는 상.하단으로 구분된 2개의 동일한 보강토옹벽에 대해서 상호 이격거리에 따른 수치해석을 수행하여 전면벽체의 수평변위, 전면벽체 배면의 수평토압, 보강토체 배면의 수평토압 그리고 보강재의 최대인장력 분포 및 크기변화 양상 등 다단식 보강토옹벽의 거동을 살펴보았다. 또한, 하단 옹벽에 증가되는 응력을 산정하고자 중첩의 원리를 적용한 2:1 응력분포법을 제시하였다. 수치해석 결과 이격거리가 증가함에 따라 상단옹벽이 하단옹벽에 미치는 영향이 감소하였으며 하단 옹벽 높이의 두배 이상 이격시, 상호 거동은 독립옹벽으로 거동하였다. 하단 옹벽내 응력 산정방법에 있어서 NCMA의 방법이 가장 보수적인 결과를 보였으며 본 연구에서 제시한 2:1 응력분포법중 주동파괴면을 고려하지 않은 방법이 수치해석 결과와 가장 유사하게 나타났다.

  • PDF