• 제목/요약/키워드: Multi-user Multi-Input Multi-Output (MU-MIMO)

검색결과 28건 처리시간 0.019초

Efficient User Selection Algorithms for Multiuser MIMO Systems with Zero-Forcing Dirty Paper Coding

  • Wang, Youxiang;Hur, Soo-Jung;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.232-239
    • /
    • 2011
  • This paper investigates the user selection problem of successive zero-forcing precoded multiuser multiple-input multiple-output (MU-MIMO) downlink systems, in which the base station and mobile receivers are equipped with multiple antennas. Assuming full knowledge of the channel state information at the transmitter, dirty paper coding (DPC) is an optimal precoding strategy, but practical implementation is difficult because of its excessive complexity. As a suboptimal DPC solution, successive zero-forcing DPC (SZF-DPC) was recently proposed; it employs partial interference cancellation at the transmitter with dirty paper encoding. Because of a dimensionality constraint, the base station may select a subset of users to serve in order to maximize the total throughput. The exhaustive search algorithm is optimal; however, its computational complexity is prohibitive. In this paper, we develop two low-complexity user scheduling algorithms to maximize the sum rate capacity of MU-MIMO systems with SZF-DPC. Both algorithms add one user at a time. The first algorithm selects the user with the maximum product of the maximum column norm and maximum eigenvalue. The second algorithm selects the user with the maximum product of the minimum column norm and minimum eigenvalue. Simulation results demonstrate that the second algorithm achieves a performance similar to that of a previously proposed capacity-based selection algorithm at a high signal-to-noise (SNR), and the first algorithm achieves performance very similar to that of a capacity-based algorithm at a low SNR, but both do so with much lower complexity.

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

하향링크 다중 사용자 MIMO 시스템에서의 일반화된 사용자 선택 알고리즘 (Generalized User Selection Algorithm im Downlink Multiuser MIMo System)

  • 강대근;신창의;금동현;최승원
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.99-105
    • /
    • 2012
  • Recently, there are many user selection algorithms in multi user multiple-input multiple-output (MU-MIMO) systems. One of well-known user selection methods is Semi orthogonal user selection (SUS). It is an algorithm maximizing channel capacity. However, it is applicable only when user's antenna is one. We propose a generalized user selection algorithm regardless of the number of user's antennas. In the proposed scheme, Base station (Bs) selects the first user who has the highest determinant of channel and generates a user group that correlation with first user's channel is less than allowance of correlation. Then, each determinant of channels made up of first user's channel and a user's channel in the generated group is calculated and BS selects the next user who has the highest determinant of that. BS selects following users by repeating above procedure. In this paper, we get better performance because of selecting users who have the highest determinant of channel as well as allowance of correlation optimally calculated through matrix operations.

다중 사용자 및 다중 안테나 하향링크 네트워크에서 적응적 사용자 선택 기법 (Adaptive User Selection in Downlink Multi-User MIMO Networks)

  • 반태원;정방철
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1597-1601
    • /
    • 2013
  • 향후 폭발적인 증가가 예상되는 모바일 데이터 트래픽을 효과적으로 수용하기 위해서 다중 안테나 기술이 차세대 이동통신 시스템의 핵심 기술로 주목을 받고 있다. 특히, 기지국에 수십 개의 안테나를 탑재하여 동시에 복수의 단말에게 데이터를 동시에 전송하는 다중 사용자 기반 다중 안테나 기술에 대한 연구가 활발히 진행되고 있다. 본 논문에서는, 이러한 다중 사용자 기반 다중 안테나 통신 시스템에서 시스템의 성능을 향상시키기 위해서 채널 상태에 따라서 적응적으로 데이터를 전송할 단말 조합을 선택할 수 있는 알고리즘을 제안한다. Monte-Carlo 기반 시뮬레이션을 통한 성능 분석 결과 제안 방식은 단말 선택 기법을 적용하지 않는 기존 방식 대비 우수한 성능을 나타내며 Exhaustive Search 기반 최적 방식에 근접하는 성능을 보여준다. 반면에, 시스템 내 단말의 수를 K라고 할 때 제안 방식은 최적 방식 대비 계산양을 $K/(2^K-1)$로 줄일 수 있다.

Efficient Transmission Mode Selection Scheme for MIMO-based WLANs

  • Thapa, Anup;Kwak, Kyung Sup;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2365-2382
    • /
    • 2014
  • While single-user spatial multiplexing multiple-input multiple-output (SU-MIMO) allows spatially multiplexed data streams to be transmitted to one node at a time, multi-user spatial multiplexing MIMO (MU-MIMO) enables the simultaneous transmission to multiple nodes. However, if the transmission time required to send packets to each node varies considerably, MU-MIMO may fail to utilize the available MIMO capacity to its full potential. The transmission time typically depends upon two factors: the link quality of the selected channel and the data length (packet size). To utilize the cumulative capacity of multiple channels in MIMO applications, the assignment of channels to each node should be controlled according to the measured channel quality or the transmission queue status of the node.A MAC protocol design that can switch between MU-MIMO and multiple SU-MIMO transmissions by considering the channel quality and queue status information prior to the actual data transmission (i.e., by exchanging control packets between transmitter and receiver pairs) could address such issues in a simple but in attractive way. In this study, we propose a new MAC protocol that is capable of performing such switching and thereby improve the system performance of very high throughput WLANs. The detailed performance analysis demonstrates that greater benefits can be obtained using the proposed scheme, as compared to conventional MU-MIMO transmission schemes.

ZFBF 기반 다중 사용자 MIMO 시스템을 위한 효과적인 채널 피드백 기법 (An Efficient Channel Feedback Method for Zeroforcing Beamforming Based Multi-User Multiple-Input Multiple-Output System)

  • 오태열;안성수;최승원
    • 한국통신학회논문지
    • /
    • 제34권9A호
    • /
    • pp.673-678
    • /
    • 2009
  • 본 논문은 다중 사용자 MIMO(Multi-User Multiple-Input Multiple-Output) 하향링크 채널 환경에서 시스템 용량을 향상시키기 위한 피드백 방법에 대해 연구하였다. 기존의 피드백 방법인 CVQ (Channel Vector Quantization)는 채널 용량을 증가시키기 위하여 피드백 부하를 증가시킬 뿐만 아니라 양자화 비트 수도 증가시킨다. CVQ는 각각의 사용자가 채널을 미리 정의된 N개의 코드북 벡터 중에서 하나로 양자화하여 그 벡터의 인덱스 값을 피드백한다. 본 논문에서는 피드백 부하의 증가없이 채널 상태 정보를 피드백 해줌으로써 시스템 용량을 향상시키는 새로운 피드백 방법을 제안하였다. 제안한 방법은 컴퓨터 시뮬레이션을 통하여 기존 방법인 CVQ와 성능을 분석하였다. 송신 안테나 수가 두 개인 경우, 제안 방법은 3비트 피드백으로 기존 CVQ 방법 6비트와 동일한 시스템 용량을 얻는 것을 확인 할 수 있었다.

간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템 (An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception)

  • 박명철;조봉균;한동석
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.17-25
    • /
    • 2013
  • 본 논문에서는 다중사용자 다중입출력 시스템에서 대역폭 효율의 감소 없이 페이딩에 대한 수신 성능을 향상시키는 부호화 알고리듬을 제안한다. 기존의 다중사용자 다중입출력 방식으로 사용되는 공간분할다중화 방식은 페이딩 경로에 취약하며, 이를 극복하기 위한 시공간블록부호화 방식은 전송량이 떨어지는 단점이 있다. 이러한 문제점을 개선하기 위하여 제안 부호화 알고리듬은 페이딩 환경에 강인하고 전송량이 송신 안테나 개수에 비례하여 증가하는 LDC(linear dispersion code) 기법을 이용하여 송신 심벌을 부호화하고, 예측한 채널 이득의 특이값 분해 값을 LDC 부호화 심벌에 전처리하여 성능을 개선한다. 그리고 컴퓨터 모의실험을 통하여 기존 알고리듬과 제안하는 알고리듬의 성능을 비교 평가한다.

채널 역변환 매트릭스의 가장 큰 싱귤러 값 영향을 줄이는 다중 사용자 프리코딩 (Power Efficient Precoding by Reducing the Effect of the Largest Singular Value of channel Inverse Matrix)

  • 노세용;양현욱;정정화
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.115-120
    • /
    • 2012
  • In multi-user multi-input multi-output (MU-MIMO) system, zero forcing beamforming (ZFB) is regarded as a realistic solution for transmitting scheme due to its low complexity and simple structure. However, ZFB shows a significant performance degradation when channel matrix has large condition number. In this case, the largest singular value of the channel inversion matrix has a dominant effect on transmit power. In this paper, we propose a perturbation method for reducing an effect of the dominant singular value. In the proposed algorithm, channel inverse matrix is first decomposed by SVD for the transmit signal to be expressed as a combination of singular vectors. Then, the transmit signal is perturbed to reduce the coefficient of the singular vector corresponding to the largest singular value. When a number of transmit antennas is 4, the simulation results of this paper shows that the proposed method shows 8dB performance enhancement at 10-3 uncoded bit error rate (BER) compared with conventional ZFB. Also, the simulation results show that the proposed method provides a comparable performance to Tomlinson-Harashima Precoding (THP) with much lower complexity.

Implementation of IEEE 802.11ac Down-link MU-MIMO WLAN MAC using Unified Design Methodology

  • Chung, Chulho;Jung, Yunho;Kim, Jaeseok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.719-727
    • /
    • 2016
  • This paper proposes a unified medium access control (MAC) design methodology and presents the implementation of the IEEE 802.11ac down-link multi-user multi-input and multi-output wireless local area network MAC using the proposed design methodology. The proposed methodology employs unified code for both network simulation and system implementation. Because the unified code closely relates these two processes, the performance of the implemented MAC system can be estimated before implementation. The MAC architecture for an access point implemented using the proposed design methodology is verified on an ARM-based platform, and it is applied to a 65 nm CMOS library.

TOUSE: A Fair User Selection Mechanism Based on Dynamic Time Warping for MU-MIMO Networks

  • Tang, Zhaoshu;Qin, Zhenquan;Zhu, Ming;Fang, Jian;Wang, Lei;Ma, Honglian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4398-4417
    • /
    • 2017
  • Multi-user Multiple-Input and Multiple-Output (MU-MIMO) has potential for prominently enhancing the capacity of wireless network by simultaneously transmitting to multiple users. User selection is an unavoidable problem which bottlenecks the gain of MU-MIMO to a great extent. Major state-of-the-art works are focusing on improving network throughput by using Channel State Information (CSI), however, the overhead of CSI feedback becomes unacceptable when the number of users is large. Some work does well in balancing tradeoff between complexity and achievable throughput but is lack of consideration of fairness. Current works universally ignore the rational utilizing of time resources, which may lead the improvements of network throughput to a standstill. In this paper, we propose TOUSE, a scalable and fair user selection scheme for MU-MIMO. The core design is dynamic-time-warping-based user selection mechanism for downlink MU-MIMO, which could make full use of concurrent transmitting time. TOUSE also presents a novel data-rate estimation method without any CSI feedback, providing supports for user selections. Simulation result shows that TOUSE significantly outperforms traditional contention-based user selection schemes in both throughput and fairness in an indoor condition.