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Abstract—This paper proposes a unified medium 
access control (MAC) design methodology and 
presents the implementation of the IEEE 802.11ac 
down-link multi-user multi-input and multi-output 
wireless local area network MAC using the proposed 
design methodology. The proposed methodology 
employs unified code for both network simulation and 
system implementation. Because the unified code 
closely relates these two processes, the performance of 
the implemented MAC system can be estimated 
before implementation. The MAC architecture for an 
access point implemented using the proposed design 
methodology is verified on an ARM-based platform, 
and it is applied to a 65 nm CMOS library.    
 
Index Terms—WLAN, IEEE 802.11ac, MAC, MU-
MIMO, unified design methodology    

I. INTRODUCTION 

IEEE 802.11ac is one of the latest amendments for 
very high throughput wireless local area networks 
(WLANs), i.e., at least 1 Gbps multi-user (MU) 
throughput and 500 Mbps single-user (SU) throughput, 
and the achievable physical layer (PHY) data rate is close 
to 7 Gbps. In particular, it employs a down-link MU 
multi-input and multi-output (DL MU-MIMO) scheme. 

The DL MU-MIMO scheme combined with frame 
aggregation enables an access point (AP) to 
simultaneously transmit multiple frames to multiple 
stations (STAs) via different spatial streams, increasing 
the MU throughput [1, 2]. 

For a medium access control (MAC) protocol, in 
general, existing design methodologies involve two 
independent steps: analyzing the network performance 
using the simplistic MAC model and implementing the 
MAC system. In this case, the consistency of results 
cannot be guaranteed because the code for each process 
differs considerably. Hence, there is a growing demand 
for a new design methodology that closely relates 
network simulation to system implementation. 

There are several approaches to co-simulate systems 
over a network by combining a physical simulator (i.e., 
MATLAB, ModelSim) and a network simulator (i.e., 
OPNET, NS-2) [3, 4]. However, they integrate pre-
implemented hardware code or simulation models with 
the network simulator and do not provide a means to 
evaluate network performance before hardware 
implementation. Therefore, this paper proposes a new 
methodology for designing the MAC protocol that 
closely correlates network simulation and system 
implementation, whereby the performance of the MAC 
system can be estimated before implementation. In 
addition, this paper presents the implementation results 
of a network simulator as well as the system hardware 
and software for IEEE 802.11ac DL MU-MIMO WLAN 
MAC using the unified design methodology. 

The remainder of this paper is organized as follows. 
Section II provides a brief overview of IEEE 802.11ac 
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MAC. Section III presents the proposed unified design 
methodology. Section IV presents the software 
implementation for the network simulator and field 
programmable gate array (FPGA) as well as very large 
scale integration (VLSI) implementation results of the 
MAC system. We conclude this paper in Section V. 

II. OVERVIEW OF IEEE 802.11AC MAC 

One of the key enhancements of the MAC feature in 
IEEE 802.11ac is the transmission opportunity (TXOP) 
sharing mode which is a new enhanced distributed 
channel access (EDCA) TXOP mode added for MU-
MIMO [5]. In this mode, when frames belonging to the 
granted access category (AC), namely primary AC, are 
transmitted via an MU-PHY convergence protocol 
(PLCP) protocol data unit (MU-PPDU), the frames 
belonging to other ACs (secondary AC) can also be 
included. The TXOP sharing mode only applies to an AP. 

IEEE 802.11ac also enhances the frame aggregation of 
IEEE 802.11n. In order to improve MAC efficiency for 
higher PHY data rates, the maximum frame length is 
significantly extended; the aggregate-MAC service data 
unit (A-MSDU) length is extended up to 11,426 bytes, 
and the aggregate-MAC protocol data unit (A-MPDU) 
length is increased up to 1,048,575 bytes. 

III. UNIFIED MAC DESIGN METHODOLOGY 

FOR DL MU-MIMO WLAN MAC 

In general, the conventional MAC design process is 
divided into two steps: (1) designing the protocol 
behaviors and evaluating the performance of 
interworking with other network protocols, and (2) 
determining the system specification and implementing 
the system in accordance with the pre-defined 
specification. Fig. 1 shows the conventional design flow 
of the MAC protocol. 

The performance evaluation of a protocol is carried 
out using network simulators such as NS-2, NS-3, or 
OPNET. A network simulator can simulate various 
network protocols and application environments; thus, it 
facilitates network development and performance 
analysis of the protocol to be implemented [6]. Because 
the source code used in a network simulator is simply 
modeled on the basis of the major functions of the 

protocol in general, it differs significantly from the code 
used for system implementation. Therefore, in 
conventional MAC implementation, the codes for the 
system software and hardware should be newly 
implemented after the target system specification is 
determined [7, 8]. Owing to the difference of each code 
for performance evaluation by network simulation and 
for system implementation, it is difficult to evaluate the 
performance of the system to be implemented before 
complete implementation of the system and network. 
Moreover, it is difficult to compare the results of network 
simulation and system evaluation. 

In order to overcome this problem, a unified design 
methodology that uses closely correlated code for both 
protocol evaluation and system implementation is 
proposed. In the proposed methodology, first, the unified 
code for network simulation and system implementation 
is developed in C/C++ even though it can be generated 
from the specification and description language (SDL) 
because it is not an optimized code and does not reflect 
the system architecture [9-11]. The code includes every 
function of the MAC protocol described in this paper, 
including the functions to be implemented to hardware, 
as well as specialized functions for network simulation 
and system implementation. Because the implemented 
code reflects the processing speed of a specific target 
system, more accurate results can be obtained during 
performance evaluation. The design specification of the 
target system and the partitioning of the MAC software 
and hardware functions can be adjusted according to 
these results. The functional code of the hardware MAC 
component is converted into Verilog hardware 
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Fig. 1. Conventional MAC Design Flow. 
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description language (HDL). By using the test vectors 
generated by the same unified code, the functionalities 
and output results can be comparable; hence, conformity 
can be check easily. The overall design flow of the 
proposed unified MAC design methodology is shown in 
Fig. 2. Because the unified code is used as the basis of all 
processes as opposed to Fig. 1, consistent results can be 
obtained from the performance evaluation and system 
verification, and the performance of the system to be 
implemented can be estimated.  

In order to integrate the unified code with the network 
simulator, several considerations are required depending 
on the network simulator employed. In this study, the 
NS-2 was used for network simulation; the 
considerations are specific to the NS-2 simulator. 
However, they are also applicable to other network 
simulators in general. 

The NS-2 simulator provides system tasks such as 
packet delivery functions and event timer functions. The 
event scheduler proceeds with the simulation by 
delivering the Packet class containing the event time to 
the process and by calling the related function at the 
specified time, which is set according to a specific event. 
In order to apply the implemented code to the NS-2 
simulator, the following two factors should be 
considered: the Packet class and the protocol timers 
handled by the event timer. 

The NS-2 simulator exchanges information between 
layers using the Packet class. The Packet class generally 
includes information such as event ID, length of event, 
transmission time, and protocol headers. However, an 
actual data is usually not included in it. Because the 

implemented MAC code has to process actual data 
streams, the pointer of the data array should be included. 
In addition, a single Packet class should contain multiple 
Packet class pointers to support frame aggregation 
adopted in IEEE 802.11ac. Fig. 3 shows the modified 
Packet class. After information of the Packet class (i.e., 
frame length and transmission time) is updated, the 
Packet class is delivered to other layers using packet 
delivery functions such as "downtarget\_" and 
"uptarget\_". 

The NS-2 simulator provides timer functions by using 
the event scheduling mechanism. By employing these 
timer functions, it is possible to implement the MAC 
protocol timers and the latency time reflecting system 
characteristics such as MAC/PHY processing time, 
which are difficult to implement using only software. 

In order to adopt the unified code for system 
development, it is necessary to consider the target system 
specification, system interface of data input/output and 
control signals, and test vector generation. This paper 
presents the implementation of IEEE 802.11ac MAC on 
an embedded processor-based system. The MAC 
software is processed by the firmware and connected to 
the MAC hardware through a bus interface and an 
interrupt signal line. Therefore, the interrupt handling 
procedures and read/write operations for the memories 
and internal registers of the MAC hardware should be 
implemented as separate functions in order to easily 
convert the hardware component of the unified code into 
Verilog HDL. 

The MAC hardware is divided into two components: 
the data processing engine and the controller. The 
conformity of the data processing engine is verified by 
comparing the input/output vectors generated from the 
unified code for each block. The controller consists of 
finite state machines. The identity of the unified code and 
the converted code can be verified by comparing their 
state transitions. Implementation of the state transition 
condition as separate functions facilitates verification and 
conversion of the code. 
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Fig. 2. Proposed Unified MAC Design Flow. 
 

Class Packet: public Event {
Packet*               mac802_11ac_pkt[ ];    (for user0~3)
Unsigned int       mac802_11ac_numpkt; (for user0~3)
Unsigned char*  mac802_11ac_data;       (for user0~3)
Unsigned int    mac802_11ac_length;   (for user0~3)}

 

Fig. 3. Modified Packet class of NS-2 (packet.h). 
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IV. IMPLEMENTATION OF IEEE 802.11AC 

MAC 

First, the unified code is developed in C/C++. Because 
the developed code reflects the considerations for 
network simulation and system implementation, as 
discussed in the previous section, it can be easily applied 
to the NS-2 simulator and the system implementation. 

 
1. Software Implementation for Network Simulator 

 
The architecture of the IEEE 802.11ac MAC code 

implemented using the proposed methodology is shown 
in Fig. 4. The unified code includes PHY service access 
point (SAP) to process a data frame through PHY. 

The MacDataSrv block receives an MSDU to be 
transmitted from logical link control (LLC) and delivers 
the successfully received MSDU to LLC. The functions 
are verified by the vectors corresponding to the test 
scenario used in network simulation. 

The Mlme block operates management functions, i.e., 
connection, power management, and link adaptation, and 
generates management frames that are used for these 
functions. Further, it stores information about the 
parameter values and statuses for MAC processing. 

The MpduGen block generates an MPDU, and stores it 
in transmission queues, existing as a linked list, with 
information for transmission. This block also applies the 
A-MSDU scheme by judging whether an A-MSDU can 
be generated when the MPDU is being stored. 

The ProtoCtrl block is in charge of the core MAC 
function, i.e., making decisions regarding channel access 
and frame transmission. It monitors the channel status 
and controls channel access for frame transmission, 

which is known as EDCA. This block also makes 
decisions regarding the use of request-to-send 
(RTS)/clear-to-send (CTS), fragmentation, frame 
aggregation, and TXOP sharing by analyzing the 
information of frames that are ready to be transmitted. 
The response of the received frame, such as an 
acknowledgment, is also accomplished by this block. 
Furthermore, this block restores the frame to the 
transmission queue or discards it after determining 
whether it is to be retransmitted owing to an error. 

Frames that have been selected for transmission by the 
ProtoCtrl block are delivered to PHY by the 
Transmission block. Frame check sequence (FCS) is 
computed simultaneously, based on the 32-bit cyclic 
redundancy code (CRC), and added at the end of every 
MPDU. When the A-MPDU mechanism is used, this 
block generates an A-MPDU subframe including an 
MPDU delimiter with 8-bit CRC and conveys it to PHY. 

The Reception block analyzes the PLCP service data 
unit (PSDU) received from PHY. On receiving an A-
MPDU, first, it divides PSDU into units of MPDU. Each 
MPDU is checked for errors and duplication. The 
successfully received MPDU is delivered to the 
MacDataSrv block and the statuses are notified to the 
ProtoCtrl block for the response procedure. 

The Timer block includes the timer functions of the 
MAC protocol, such as slot, inter-frame space (IFS), 
response timeout, RTS timeout, network allocation 
vector (NAV), and time synchronization function (TSF). 
They are applied to the event timers of the NS-2 
simulator. 

In order to evaluate the network performance by the 
implemented network simulator, the simulation 
environments are configured as follows. Each station 
including AP has saturation traffic belonging to four ACs 
(i.e., AC_BK (background), AC_BE (best effort), AC_VI 
(video), and AC_VO (voice)) and the EDCA parameters, 
such as arbitration IFS (AIFS), contention window (CW), 
and retry limit, are set to AIFSi = [79,61,43,34]μs, 
TXOPLimiti = [0,0,3008,1504]μs, CWmin = 31, CWmax 
= 1023 and RetryLimit = 7. The variable bit rate traffic is 
generated with variable length (average 1,200 bytes). The 
secondary ACs for the TXOP sharing mode are arranged 
in descending order of priority, and traffic belonging to 
different ACs is destined to different destination STAs. 
Each station has two antennas while an AP has eight 
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Fig. 4. Architecture of IEEE 802.11ac MAC unified code. 
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antennas and supports TXOP sharing mode. The channel 
bandwidth is set to 80 MHz and the modulation and 
coding scheme index is set to 9, i.e., the PHY data rate is 
780 Mbps for each user and up to 3.12 Gbps for MU. 

Fig. 5 shows the saturation throughput of each AC of 
the overall network according to the TXOP sharing mode. 
The throughput of each AC increases significantly with 
the TXOP sharing mode because a secondary AC can be 
transmitted via MU-PPDU. 

 
2. System Implementation of IEEE 802.11ac MAC 

 
The IEEE 802.11ac MAC architecture for an AP, 

which supports the TXOP sharing mode with DL MU-
MIMO (up to 3-stream MIMO for SU and 8-stream 
MIMO for MU), implemented using the proposed 
methodology is partitioned into two components: MAC 
software and MAC hardware. The functions of each 
component are classified in order to satisfy the 
performance requirements and to efficiently execute its 

newly adopted features. Accordingly, the MAC hardware 
performs protocol time-related functions such as 
accessing a channel and transmitting frames at the exact 
time after the appropriate IFS including the response 
procedure. The MAC hardware also performs repeated 
processor- and bus-intensive functions such as 
calculating CRC and detecting and filtering duplicated 
MPDU. The software and hardware MAC functions are 
summarized in Table 1. 

The functional codes for MAC software are extracted 
from the unified code and ported to the ARM firmware. 
System tasks specific to the NS-2 simulator are replaced 
by ARM-specific functions. Further, the functional codes 
for MAC hardware are converted into Verilog HDL, and 
system tasks specific to the NS-2 simulator, such as 
protocol timers, are modified for the hardware 
implementation. 

The MAC software and hardware architectures for the 
IEEE 802.11ac system implemented using the proposed 
methodology are shown in Fig. 6. It can be seen that the 
MacDataSrv block is solely software-operated, whereas 
the Transmission block is solely hardware-operated. The 
other blocks are operated by both MAC software and 
MAC hardware. The MAC software components of these 
blocks support the operations of the corresponding 
blocks of the MAC hardware components. 

The hardware component of the MpduGen block 
contains frame buffers that store the last elements of the 
transmission queue in the software component of the 
MpduGen block. The buffer is implemented in a circular 
queue with a small capacity; it can support multiple frame 
transmission and A-MPDU transmission efficiently. 

The hardware component of the ProtoCtrl block has a 
channel state monitor to check whether the medium is 
busy. The independent backoff procedure for each AC is 
invoked after the corresponding IFS to transmit a frame 
when the channel is found to be busy or after a failed 

 

(a) without TXOP sharing mode 
 

 

(b) with TXOP sharing mode 

Fig. 5. Saturation throughput for each AC w/wo TXOP sharing 
mode. 

 

Table 1. Partitioned functions of IEEE 802.11ac MAC 

MAC Software MAC Hardware 
- Management frame generation 
- MPDU generation 
- MSDU (de) aggregation 
- Tx/Rx queue management 
- TXOP scheduling 
(TXOP sharing) 
- (De) fragmentation 
- Retransmission 
- Multi-rate support 

- Channel access function 
- Frame transaction 
- MPDU (de) aggregation 
- Fragmentation 
- Frame check sequence 
- Duplication detection 
- Protocol timer 
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transmission. A virtual collision handler resolves internal 
collisions among the ACs. The hardware component of 
the ProtoCtrl block conducts the transmission procedure 
according to information about the useof RTS/CTS, 
fragmentation, frame aggregation, and TXOP sharing set 
by the software component of the ProtoCtrl block. The 
response procedure is determined and accomplished by 
the hardware; the response frame must be transmitted 
after a short IFS (16 μs) immediately following the 
reception. The software component of the ProtoCtrl 
block determines the frame exchange sequences during 
the obtained TXOP by the backoff procedure, and it 
calculates the value of the duration field of each MPDU. 
Furthermore, it performs the retransmission procedure. 

The Transmission block assembles the PLCP 
information, MAC header, and payload, which are stored 
in the frame buffers and registers in the MpduGen block, 
into a PSDU and delivers it to PHY. To support the 
TXOP sharing mode with DL MU-MIMO when MAC 
acts as an AP, this block includes four parallel Datapump 
sub-blocks that can transmit MPDUs contained in the 
frame buffer of each AC to up to four users 
simultaneously. Each sub-block delivers PSDU to PHY 
via a dedicated data path that supports the maximum 2.34 
Gbps PHY data rate for SU. Whereas all four sub-blocks 
are activated when MAC acts as an AP, only one sub-
block is activated when MAC acts as an STA. The block 

diagram of the Transmission block is shown in Fig. 7.  
The hardware component of the Reception block de-

aggregates the PSDU received from PHY on receiving an 
A-MPDU. The de-aggregation process checks whether 
the first four octets constitute the MPDU delimiter as 
expected. If the MPDU delimiter is valid, i.e., 8-bit CRC 
and the delimiter signature are confirmed, then, the 
MPDU is extracted from the received A-MPDU. If the 
MPDU delimiter is not valid, it skips forward by four 
octets and checks for validation repeatedly. After de-
aggregation, the Reception block continues processing 
units of MPDU. The hardware component of the 
Reception block includes the Duplication Filter sub-
block that maintains a cache of recently received MPDUs 
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Fig. 6. Software and hardware architecture of the implemented IEEE 802.11ac MAC system (AP). 
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and performs comparisons with the received MPDU to 
discard the duplicated MPDU. In order to reduce 
overhead of the system bus, only the successfully 
received and non-duplicated MPDU is delivered to the 
software component of the Reception block through the 
reception buffer. The software component of the 
Reception block stores and reorders the received MSDUs. 
Then, the completed MSDUs are delivered to the upper 
layer. 

The designed MAC software is compiled for the 
firmware of the target ARM processor, and the MAC 
hardware is applied to the target FPGA. Table 2 
summarizes the implementation details. The required 
clock frequency of the MAC hardware is 320 MHz to 
support a maximum PHY data rate of 3-stream MIMO 
for SU (2.34 Gbps) at a single Datapump sub-block; 
however, owing to the operating speed limit of the test 
platform, i.e., interface between ARM processor and 
FPGA, the target clock frequency of FPGA is scaled 
down to 40 MHz, and the system is tested under this 
clock frequency. 

Fig. 8 shows the FPGA-based test system architecture 
and the block diagram of the test platform. Two test 
platforms are used to verify the operations of the 
designed IEEE 802.11ac MAC system. These platforms 
are wired-connected to each other for establishing a peer-
to-peer connection. The operations of the designed IEEE 
802.11ac MAC system are verified by generating 
MSDUs in the ARM firmware, which are delivered to 
the MAC hardware. Test patterns are generated from the 
unified code, and the validity of implementation is 
confirmed by comparing the results. 

We also compare the performance evaluation results of 
the network simulation and the implemented MAC 
system. To evaluate the throughput of the implemented 
MAC system under a DL MU-MIMO environment with 
a single test platform, the MAC hardware is connected to 
four test modules modeled to perform only the MAC 
functions related to the response procedure. Only DL 

traffic is generated and delivered from the MAC 
hardware (AP) to the test modules (multiple STAs), 
whereas the other parameters are set to the same values 
as those in the network simulation. Because the clock 
frequency of the test platform is scaled down, the results 
of the test platform are multiplied by 8 for comparison 
with the results of the network simulation. 

Table 3 presents a comparison of throughput results 
for the network simulation and the implemented system 
from the proposed methodology and throughput results 
from the conventional methodology, e.g. AC_BE. 
Because the number of antennas is set to two for each 
STA, the AP with DL MU-MIMO can utilize more 

Table 2. FPGA synthesis reports of the proposed IEEE 
802.11ac MAC hardware (AP) 

Target Device Xilinx XC5VLX330 
Target Clock Frequency 40 MHz 

Dual Port RAMs (RAM32M) 24 
Block RAM (RAMB36) 65 

Total LUTs 9237 
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Fig. 8. Test system architecture and block diagram. 
 

Table 3. Throughput comparison of the proposed methodology 
and the conventional methodology (AC_BE) 

 Proposed 
Design Methodology 

Conventional 
Design Methodology 

# of 
Users System Sim. Diff. Sim. Diff. 

1 221.0 Mbps 223.2 Mbps 1.0 % 235.3 Mbps 6.5 % 
2 218.3 Mbps 216.6 Mbps 0.8 % 233.7 Mbps 7.0 % 
3 506.8 Mbps 513.0 Mbps 1.2 % 539.0 Mbps 6.4 % 
4 612.5 Mbps 620.7 Mbps 1.3 % 649.9 Mbps 6.1 % 
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antennas as the number of STAs increases, and the 
throughput is improved. The system evaluation results 
are lower than the throughput results of the conventional 
methodology because of the system processing delay but 
in good agreement with the results of the network 
simulation by the proposed methodology (within 1.5 % 
of differences). The differences of the results by the 
conventional methodology from the results of the system 
evaluation are much greater (more than 6 %). Thus, these 
data show that the performance of the implemented 
MAC system can be estimated in advance by using the 
proposed methodology. 

The MAC hardware is also applied to 65 nm CMOS 
technology. Fig. 9 shows the VLSI layout of the 
implemented MAC hardware and the comparison with 
previously published work is summarized in Table 4. 
Only MAC function has been employed in [12], whereas 
PHY and analog circuits have also been included in [13, 

14]. PHY is the largest component of a digital circuit. 
The comparison results show that the design proposed in 
this paper has a similar gate count but supports enhanced 
MAC features and AP functionality, such as DL MU-
MIMO and the TXOP sharing mode; moreover, it 
achieves a much higher throughput up to 5.1 Gbps for 
MU. 

V. CONCLUSION 

This paper proposed a unified MAC design 
methodology for estimating the network performance of 
a MAC system prior to its implementation. In contrast to 
the conventional design approach, the proposed 
methodology employs identical code for both network 
performance evaluation and system implementation. The 
proposed methodology was adopted for implementing 
the IEEE 802.11ac DL MU-MIMO WLAN MAC system, 
which is applied to an ARM-based test platform and 65 
nm CMOS technology. Its validity was confirmed via 
comparative evaluation of the network simulation and the 
implemented system. 
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Fig. 9. Layout of implemented IEEE 802.11ac MAC hardware 
(AP). 

 
Table 4. Comparison of the implementation results 

Design Paper Ref.[12] Ref.[13] Ref.[14] 
CMOS 
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