
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2016.16.6.719 ISSN(Online) 2233-4866

Manuscript received Aug. 27, 2015; accepted Dec. 2, 2015
1 School of Electrical & Electronic Engineering, Yonsei University,
Seoul, Korea.
2 School of Electronics and Information Engineering, Korea Aerospace
University, Goyang-si, Korea
E-mail : jaekim@yonsei.ac.kr

Implementation of IEEE 802.11ac Down-link
MU-MIMO WLAN MAC using Unified Design

Methodology

Chulho Chung1, Yunho Jung2, and Jaeseok Kim1

Abstract—This paper proposes a unified medium
access control (MAC) design methodology and
presents the implementation of the IEEE 802.11ac
down-link multi-user multi-input and multi-output
wireless local area network MAC using the proposed
design methodology. The proposed methodology
employs unified code for both network simulation and
system implementation. Because the unified code
closely relates these two processes, the performance of
the implemented MAC system can be estimated
before implementation. The MAC architecture for an
access point implemented using the proposed design
methodology is verified on an ARM-based platform,
and it is applied to a 65 nm CMOS library.

Index Terms—WLAN, IEEE 802.11ac, MAC, MU-
MIMO, unified design methodology

I. INTRODUCTION

IEEE 802.11ac is one of the latest amendments for
very high throughput wireless local area networks
(WLANs), i.e., at least 1 Gbps multi-user (MU)
throughput and 500 Mbps single-user (SU) throughput,
and the achievable physical layer (PHY) data rate is close
to 7 Gbps. In particular, it employs a down-link MU
multi-input and multi-output (DL MU-MIMO) scheme.

The DL MU-MIMO scheme combined with frame
aggregation enables an access point (AP) to
simultaneously transmit multiple frames to multiple
stations (STAs) via different spatial streams, increasing
the MU throughput [1, 2].

For a medium access control (MAC) protocol, in
general, existing design methodologies involve two
independent steps: analyzing the network performance
using the simplistic MAC model and implementing the
MAC system. In this case, the consistency of results
cannot be guaranteed because the code for each process
differs considerably. Hence, there is a growing demand
for a new design methodology that closely relates
network simulation to system implementation.

There are several approaches to co-simulate systems
over a network by combining a physical simulator (i.e.,
MATLAB, ModelSim) and a network simulator (i.e.,
OPNET, NS-2) [3, 4]. However, they integrate pre-
implemented hardware code or simulation models with
the network simulator and do not provide a means to
evaluate network performance before hardware
implementation. Therefore, this paper proposes a new
methodology for designing the MAC protocol that
closely correlates network simulation and system
implementation, whereby the performance of the MAC
system can be estimated before implementation. In
addition, this paper presents the implementation results
of a network simulator as well as the system hardware
and software for IEEE 802.11ac DL MU-MIMO WLAN
MAC using the unified design methodology.

The remainder of this paper is organized as follows.
Section II provides a brief overview of IEEE 802.11ac

720 CHULHO CHUNG et al : IMPLEMENTATION OF IEEE 802.11AC DOWN-LINK MU-MIMO WLAN MAC USING UNIFIED …

MAC. Section III presents the proposed unified design
methodology. Section IV presents the software
implementation for the network simulator and field
programmable gate array (FPGA) as well as very large
scale integration (VLSI) implementation results of the
MAC system. We conclude this paper in Section V.

II. OVERVIEW OF IEEE 802.11AC MAC

One of the key enhancements of the MAC feature in
IEEE 802.11ac is the transmission opportunity (TXOP)
sharing mode which is a new enhanced distributed
channel access (EDCA) TXOP mode added for MU-
MIMO [5]. In this mode, when frames belonging to the
granted access category (AC), namely primary AC, are
transmitted via an MU-PHY convergence protocol
(PLCP) protocol data unit (MU-PPDU), the frames
belonging to other ACs (secondary AC) can also be
included. The TXOP sharing mode only applies to an AP.

IEEE 802.11ac also enhances the frame aggregation of
IEEE 802.11n. In order to improve MAC efficiency for
higher PHY data rates, the maximum frame length is
significantly extended; the aggregate-MAC service data
unit (A-MSDU) length is extended up to 11,426 bytes,
and the aggregate-MAC protocol data unit (A-MPDU)
length is increased up to 1,048,575 bytes.

III. UNIFIED MAC DESIGN METHODOLOGY

FOR DL MU-MIMO WLAN MAC

In general, the conventional MAC design process is
divided into two steps: (1) designing the protocol
behaviors and evaluating the performance of
interworking with other network protocols, and (2)
determining the system specification and implementing
the system in accordance with the pre-defined
specification. Fig. 1 shows the conventional design flow
of the MAC protocol.

The performance evaluation of a protocol is carried
out using network simulators such as NS-2, NS-3, or
OPNET. A network simulator can simulate various
network protocols and application environments; thus, it
facilitates network development and performance
analysis of the protocol to be implemented [6]. Because
the source code used in a network simulator is simply
modeled on the basis of the major functions of the

protocol in general, it differs significantly from the code
used for system implementation. Therefore, in
conventional MAC implementation, the codes for the
system software and hardware should be newly
implemented after the target system specification is
determined [7, 8]. Owing to the difference of each code
for performance evaluation by network simulation and
for system implementation, it is difficult to evaluate the
performance of the system to be implemented before
complete implementation of the system and network.
Moreover, it is difficult to compare the results of network
simulation and system evaluation.

In order to overcome this problem, a unified design
methodology that uses closely correlated code for both
protocol evaluation and system implementation is
proposed. In the proposed methodology, first, the unified
code for network simulation and system implementation
is developed in C/C++ even though it can be generated
from the specification and description language (SDL)
because it is not an optimized code and does not reflect
the system architecture [9-11]. The code includes every
function of the MAC protocol described in this paper,
including the functions to be implemented to hardware,
as well as specialized functions for network simulation
and system implementation. Because the implemented
code reflects the processing speed of a specific target
system, more accurate results can be obtained during
performance evaluation. The design specification of the
target system and the partitioning of the MAC software
and hardware functions can be adjusted according to
these results. The functional code of the hardware MAC
component is converted into Verilog hardware

Protocol Verifica tion
(UML, SDL, MSC)

Performance Eva luation
(Network Simulator,
C/C++, MATLAB)

Protocol Specification

SW/HW Partitioning

Software Design
(C/C++)

Hardware Design
(HDL)

Co-Verifica tion

Algorithm &
Performance
Eva luation :

SW/HW Design &
Co-Verifica tion :

System Specifica tion

Fig. 1. Conventional MAC Design Flow.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 721

description language (HDL). By using the test vectors
generated by the same unified code, the functionalities
and output results can be comparable; hence, conformity
can be check easily. The overall design flow of the
proposed unified MAC design methodology is shown in
Fig. 2. Because the unified code is used as the basis of all
processes as opposed to Fig. 1, consistent results can be
obtained from the performance evaluation and system
verification, and the performance of the system to be
implemented can be estimated.

In order to integrate the unified code with the network
simulator, several considerations are required depending
on the network simulator employed. In this study, the
NS-2 was used for network simulation; the
considerations are specific to the NS-2 simulator.
However, they are also applicable to other network
simulators in general.

The NS-2 simulator provides system tasks such as
packet delivery functions and event timer functions. The
event scheduler proceeds with the simulation by
delivering the Packet class containing the event time to
the process and by calling the related function at the
specified time, which is set according to a specific event.
In order to apply the implemented code to the NS-2
simulator, the following two factors should be
considered: the Packet class and the protocol timers
handled by the event timer.

The NS-2 simulator exchanges information between
layers using the Packet class. The Packet class generally
includes information such as event ID, length of event,
transmission time, and protocol headers. However, an
actual data is usually not included in it. Because the

implemented MAC code has to process actual data
streams, the pointer of the data array should be included.
In addition, a single Packet class should contain multiple
Packet class pointers to support frame aggregation
adopted in IEEE 802.11ac. Fig. 3 shows the modified
Packet class. After information of the Packet class (i.e.,
frame length and transmission time) is updated, the
Packet class is delivered to other layers using packet
delivery functions such as "downtarget_" and
"uptarget_".

The NS-2 simulator provides timer functions by using
the event scheduling mechanism. By employing these
timer functions, it is possible to implement the MAC
protocol timers and the latency time reflecting system
characteristics such as MAC/PHY processing time,
which are difficult to implement using only software.

In order to adopt the unified code for system
development, it is necessary to consider the target system
specification, system interface of data input/output and
control signals, and test vector generation. This paper
presents the implementation of IEEE 802.11ac MAC on
an embedded processor-based system. The MAC
software is processed by the firmware and connected to
the MAC hardware through a bus interface and an
interrupt signal line. Therefore, the interrupt handling
procedures and read/write operations for the memories
and internal registers of the MAC hardware should be
implemented as separate functions in order to easily
convert the hardware component of the unified code into
Verilog HDL.

The MAC hardware is divided into two components:
the data processing engine and the controller. The
conformity of the data processing engine is verified by
comparing the input/output vectors generated from the
unified code for each block. The controller consists of
finite state machines. The identity of the unified code and
the converted code can be verified by comparing their
state transitions. Implementation of the state transition
condition as separate functions facilitates verification and
conversion of the code.

Design
Functional Code

System Arch. &
SW/HW Partitioning

System Verif ication

Performance
Eva luation

(Network Simulator)

System HW
(HDL)

Test
Generation

System SW
(C/C++)

System Implementation

Protocol Specification
& Verifica tion

A
dj

us
tm

en
t

Consistent Results

Unified Code
(C/C++)

Test
Vector

Fig. 2. Proposed Unified MAC Design Flow.

Class Packet: public Event {
Packet* mac802_11ac_pkt[]; (for user0~3)
Unsigned int mac802_11ac_numpkt; (for user0~3)
Unsigned char* mac802_11ac_data; (for user0~3)
Unsigned int mac802_11ac_length; (for user0~3)}

Fig. 3. Modified Packet class of NS-2 (packet.h).

722 CHULHO CHUNG et al : IMPLEMENTATION OF IEEE 802.11AC DOWN-LINK MU-MIMO WLAN MAC USING UNIFIED …

IV. IMPLEMENTATION OF IEEE 802.11AC

MAC

First, the unified code is developed in C/C++. Because
the developed code reflects the considerations for
network simulation and system implementation, as
discussed in the previous section, it can be easily applied
to the NS-2 simulator and the system implementation.

1. Software Implementation for Network Simulator

The architecture of the IEEE 802.11ac MAC code

implemented using the proposed methodology is shown
in Fig. 4. The unified code includes PHY service access
point (SAP) to process a data frame through PHY.

The MacDataSrv block receives an MSDU to be
transmitted from logical link control (LLC) and delivers
the successfully received MSDU to LLC. The functions
are verified by the vectors corresponding to the test
scenario used in network simulation.

The Mlme block operates management functions, i.e.,
connection, power management, and link adaptation, and
generates management frames that are used for these
functions. Further, it stores information about the
parameter values and statuses for MAC processing.

The MpduGen block generates an MPDU, and stores it
in transmission queues, existing as a linked list, with
information for transmission. This block also applies the
A-MSDU scheme by judging whether an A-MSDU can
be generated when the MPDU is being stored.

The ProtoCtrl block is in charge of the core MAC
function, i.e., making decisions regarding channel access
and frame transmission. It monitors the channel status
and controls channel access for frame transmission,

which is known as EDCA. This block also makes
decisions regarding the use of request-to-send
(RTS)/clear-to-send (CTS), fragmentation, frame
aggregation, and TXOP sharing by analyzing the
information of frames that are ready to be transmitted.
The response of the received frame, such as an
acknowledgment, is also accomplished by this block.
Furthermore, this block restores the frame to the
transmission queue or discards it after determining
whether it is to be retransmitted owing to an error.

Frames that have been selected for transmission by the
ProtoCtrl block are delivered to PHY by the
Transmission block. Frame check sequence (FCS) is
computed simultaneously, based on the 32-bit cyclic
redundancy code (CRC), and added at the end of every
MPDU. When the A-MPDU mechanism is used, this
block generates an A-MPDU subframe including an
MPDU delimiter with 8-bit CRC and conveys it to PHY.

The Reception block analyzes the PLCP service data
unit (PSDU) received from PHY. On receiving an A-
MPDU, first, it divides PSDU into units of MPDU. Each
MPDU is checked for errors and duplication. The
successfully received MPDU is delivered to the
MacDataSrv block and the statuses are notified to the
ProtoCtrl block for the response procedure.

The Timer block includes the timer functions of the
MAC protocol, such as slot, inter-frame space (IFS),
response timeout, RTS timeout, network allocation
vector (NAV), and time synchronization function (TSF).
They are applied to the event timers of the NS-2
simulator.

In order to evaluate the network performance by the
implemented network simulator, the simulation
environments are configured as follows. Each station
including AP has saturation traffic belonging to four ACs
(i.e., AC_BK (background), AC_BE (best effort), AC_VI
(video), and AC_VO (voice)) and the EDCA parameters,
such as arbitration IFS (AIFS), contention window (CW),
and retry limit, are set to AIFSi = [79,61,43,34]μs,
TXOPLimiti = [0,0,3008,1504]μs, CWmin = 31, CWmax
= 1023 and RetryLimit = 7. The variable bit rate traffic is
generated with variable length (average 1,200 bytes). The
secondary ACs for the TXOP sharing mode are arranged
in descending order of priority, and traffic belonging to
different ACs is destined to different destination STAs.
Each station has two antennas while an AP has eight

MacDataSrv

MpduGen

ProtoCtrl

Mlme

Transmission Reception

PhySap

Timer

Fig. 4. Architecture of IEEE 802.11ac MAC unified code.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 723

antennas and supports TXOP sharing mode. The channel
bandwidth is set to 80 MHz and the modulation and
coding scheme index is set to 9, i.e., the PHY data rate is
780 Mbps for each user and up to 3.12 Gbps for MU.

Fig. 5 shows the saturation throughput of each AC of
the overall network according to the TXOP sharing mode.
The throughput of each AC increases significantly with
the TXOP sharing mode because a secondary AC can be
transmitted via MU-PPDU.

2. System Implementation of IEEE 802.11ac MAC

The IEEE 802.11ac MAC architecture for an AP,

which supports the TXOP sharing mode with DL MU-
MIMO (up to 3-stream MIMO for SU and 8-stream
MIMO for MU), implemented using the proposed
methodology is partitioned into two components: MAC
software and MAC hardware. The functions of each
component are classified in order to satisfy the
performance requirements and to efficiently execute its

newly adopted features. Accordingly, the MAC hardware
performs protocol time-related functions such as
accessing a channel and transmitting frames at the exact
time after the appropriate IFS including the response
procedure. The MAC hardware also performs repeated
processor- and bus-intensive functions such as
calculating CRC and detecting and filtering duplicated
MPDU. The software and hardware MAC functions are
summarized in Table 1.

The functional codes for MAC software are extracted
from the unified code and ported to the ARM firmware.
System tasks specific to the NS-2 simulator are replaced
by ARM-specific functions. Further, the functional codes
for MAC hardware are converted into Verilog HDL, and
system tasks specific to the NS-2 simulator, such as
protocol timers, are modified for the hardware
implementation.

The MAC software and hardware architectures for the
IEEE 802.11ac system implemented using the proposed
methodology are shown in Fig. 6. It can be seen that the
MacDataSrv block is solely software-operated, whereas
the Transmission block is solely hardware-operated. The
other blocks are operated by both MAC software and
MAC hardware. The MAC software components of these
blocks support the operations of the corresponding
blocks of the MAC hardware components.

The hardware component of the MpduGen block
contains frame buffers that store the last elements of the
transmission queue in the software component of the
MpduGen block. The buffer is implemented in a circular
queue with a small capacity; it can support multiple frame
transmission and A-MPDU transmission efficiently.

The hardware component of the ProtoCtrl block has a
channel state monitor to check whether the medium is
busy. The independent backoff procedure for each AC is
invoked after the corresponding IFS to transmit a frame
when the channel is found to be busy or after a failed

(a) without TXOP sharing mode

(b) with TXOP sharing mode

Fig. 5. Saturation throughput for each AC w/wo TXOP sharing
mode.

Table 1. Partitioned functions of IEEE 802.11ac MAC

MAC Software MAC Hardware
- Management frame generation
- MPDU generation
- MSDU (de) aggregation
- Tx/Rx queue management
- TXOP scheduling
(TXOP sharing)
- (De) fragmentation
- Retransmission
- Multi-rate support

- Channel access function
- Frame transaction
- MPDU (de) aggregation
- Fragmentation
- Frame check sequence
- Duplication detection
- Protocol timer

724 CHULHO CHUNG et al : IMPLEMENTATION OF IEEE 802.11AC DOWN-LINK MU-MIMO WLAN MAC USING UNIFIED …

transmission. A virtual collision handler resolves internal
collisions among the ACs. The hardware component of
the ProtoCtrl block conducts the transmission procedure
according to information about the useof RTS/CTS,
fragmentation, frame aggregation, and TXOP sharing set
by the software component of the ProtoCtrl block. The
response procedure is determined and accomplished by
the hardware; the response frame must be transmitted
after a short IFS (16 μs) immediately following the
reception. The software component of the ProtoCtrl
block determines the frame exchange sequences during
the obtained TXOP by the backoff procedure, and it
calculates the value of the duration field of each MPDU.
Furthermore, it performs the retransmission procedure.

The Transmission block assembles the PLCP
information, MAC header, and payload, which are stored
in the frame buffers and registers in the MpduGen block,
into a PSDU and delivers it to PHY. To support the
TXOP sharing mode with DL MU-MIMO when MAC
acts as an AP, this block includes four parallel Datapump
sub-blocks that can transmit MPDUs contained in the
frame buffer of each AC to up to four users
simultaneously. Each sub-block delivers PSDU to PHY
via a dedicated data path that supports the maximum 2.34
Gbps PHY data rate for SU. Whereas all four sub-blocks
are activated when MAC acts as an AP, only one sub-
block is activated when MAC acts as an STA. The block

diagram of the Transmission block is shown in Fig. 7.
The hardware component of the Reception block de-

aggregates the PSDU received from PHY on receiving an
A-MPDU. The de-aggregation process checks whether
the first four octets constitute the MPDU delimiter as
expected. If the MPDU delimiter is valid, i.e., 8-bit CRC
and the delimiter signature are confirmed, then, the
MPDU is extracted from the received A-MPDU. If the
MPDU delimiter is not valid, it skips forward by four
octets and checks for validation repeatedly. After de-
aggregation, the Reception block continues processing
units of MPDU. The hardware component of the
Reception block includes the Duplication Filter sub-
block that maintains a cache of recently received MPDUs

MAC Software

Mlme MAC Hardware

CRC

CRC32

ProtoCtrl

MpduGen

ProtoCtrl

Reception

MacData
Srv

MpduGen

MSDU
From LLC

MIB Manager

MLME
Service

Prepare
MPDU PS Q

Power Management

Defragment

L
LC

Station M
anagem

ent

MSDU
to LLC

Mlme
MIB Reg.

Timer

Tx Q

TID Q

Beacon Q

Tx
Coord.

Rx
Coord.

PS Buf.

Tx Buf.

AC Buf.

Beacon Buf.

Transmission

Tx
Coord.

Rx
Coord.

Backoff (VO)

Backoff (VI)

Backoff (BE)

Backoff (BK)

Channe l
State

Monitor

Control Buf.

Reception

Duplica tion F ilte r Validate MPDU De-agg.Rx Buf.

CRC8

PH
Y

Data path Control path

Power Management

R
F

Fig. 6. Software and hardware architecture of the implemented IEEE 802.11ac MAC system (AP).

CRC

Transmission (H/W)

Datapump
(User0)

Tx Req

Datapump
(User1)

Datapump
(User2)

Datapump
(User3)

CRC32/8
(User0)

CRC32/8
(User1)

CRC32/8
(User2)

CRC32/8
(User3)

Data

PSDU
(USER0)

PSDU
(USER1)

PSDU
(USER2)

PSDU
(USER3)

Fig. 7. Block diagram of the Transmission block (H/W).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 725

and performs comparisons with the received MPDU to
discard the duplicated MPDU. In order to reduce
overhead of the system bus, only the successfully
received and non-duplicated MPDU is delivered to the
software component of the Reception block through the
reception buffer. The software component of the
Reception block stores and reorders the received MSDUs.
Then, the completed MSDUs are delivered to the upper
layer.

The designed MAC software is compiled for the
firmware of the target ARM processor, and the MAC
hardware is applied to the target FPGA. Table 2
summarizes the implementation details. The required
clock frequency of the MAC hardware is 320 MHz to
support a maximum PHY data rate of 3-stream MIMO
for SU (2.34 Gbps) at a single Datapump sub-block;
however, owing to the operating speed limit of the test
platform, i.e., interface between ARM processor and
FPGA, the target clock frequency of FPGA is scaled
down to 40 MHz, and the system is tested under this
clock frequency.

Fig. 8 shows the FPGA-based test system architecture
and the block diagram of the test platform. Two test
platforms are used to verify the operations of the
designed IEEE 802.11ac MAC system. These platforms
are wired-connected to each other for establishing a peer-
to-peer connection. The operations of the designed IEEE
802.11ac MAC system are verified by generating
MSDUs in the ARM firmware, which are delivered to
the MAC hardware. Test patterns are generated from the
unified code, and the validity of implementation is
confirmed by comparing the results.

We also compare the performance evaluation results of
the network simulation and the implemented MAC
system. To evaluate the throughput of the implemented
MAC system under a DL MU-MIMO environment with
a single test platform, the MAC hardware is connected to
four test modules modeled to perform only the MAC
functions related to the response procedure. Only DL

traffic is generated and delivered from the MAC
hardware (AP) to the test modules (multiple STAs),
whereas the other parameters are set to the same values
as those in the network simulation. Because the clock
frequency of the test platform is scaled down, the results
of the test platform are multiplied by 8 for comparison
with the results of the network simulation.

Table 3 presents a comparison of throughput results
for the network simulation and the implemented system
from the proposed methodology and throughput results
from the conventional methodology, e.g. AC_BE.
Because the number of antennas is set to two for each
STA, the AP with DL MU-MIMO can utilize more

Table 2. FPGA synthesis reports of the proposed IEEE
802.11ac MAC hardware (AP)

Target Device Xilinx XC5VLX330
Target Clock Frequency 40 MHz

Dual Port RAMs (RAM32M) 24
Block RAM (RAMB36) 65

Total LUTs 9237

Test P latform

PC PC

Test P latform

(a) Test system architecture

FPGA

MAC
Hardware

DATA

ADDR

MAC_INT

CLK

Memory

AMBA
I/F

ARM
Processor

(MAC
Software)

Test
(STA0)

ADDR

DATA

CONTROL

Test
(STA1)

Test
(STA2)

Test
(STA3)

(b) Block diagram of test platform

Fig. 8. Test system architecture and block diagram.

Table 3. Throughput comparison of the proposed methodology
and the conventional methodology (AC_BE)

 Proposed
Design Methodology

Conventional
Design Methodology

of
Users System Sim. Diff. Sim. Diff.

1 221.0 Mbps 223.2 Mbps 1.0 % 235.3 Mbps 6.5 %
2 218.3 Mbps 216.6 Mbps 0.8 % 233.7 Mbps 7.0 %
3 506.8 Mbps 513.0 Mbps 1.2 % 539.0 Mbps 6.4 %
4 612.5 Mbps 620.7 Mbps 1.3 % 649.9 Mbps 6.1 %

726 CHULHO CHUNG et al : IMPLEMENTATION OF IEEE 802.11AC DOWN-LINK MU-MIMO WLAN MAC USING UNIFIED …

antennas as the number of STAs increases, and the
throughput is improved. The system evaluation results
are lower than the throughput results of the conventional
methodology because of the system processing delay but
in good agreement with the results of the network
simulation by the proposed methodology (within 1.5 %
of differences). The differences of the results by the
conventional methodology from the results of the system
evaluation are much greater (more than 6 %). Thus, these
data show that the performance of the implemented
MAC system can be estimated in advance by using the
proposed methodology.

The MAC hardware is also applied to 65 nm CMOS
technology. Fig. 9 shows the VLSI layout of the
implemented MAC hardware and the comparison with
previously published work is summarized in Table 4.
Only MAC function has been employed in [12], whereas
PHY and analog circuits have also been included in [13,

14]. PHY is the largest component of a digital circuit.
The comparison results show that the design proposed in
this paper has a similar gate count but supports enhanced
MAC features and AP functionality, such as DL MU-
MIMO and the TXOP sharing mode; moreover, it
achieves a much higher throughput up to 5.1 Gbps for
MU.

V. CONCLUSION

This paper proposed a unified MAC design
methodology for estimating the network performance of
a MAC system prior to its implementation. In contrast to
the conventional design approach, the proposed
methodology employs identical code for both network
performance evaluation and system implementation. The
proposed methodology was adopted for implementing
the IEEE 802.11ac DL MU-MIMO WLAN MAC system,
which is applied to an ARM-based test platform and 65
nm CMOS technology. Its validity was confirmed via
comparative evaluation of the network simulation and the
implemented system.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. NRF-2015R1A2A2A01004883).

REFERENCES

[1] R. Van Nee, “Breaking the Gigabit-per-second barrier
with 802.11AC,” Wireless Communications, IEEE,
Vol.18, No.2, pp.4-4, 2011.

[2] Y. Jung, et al., “7.7 Gbps Encoder Design for IEEE
802.11ac QC-LDPC Codes,” Journal of Semicon-
ductor Technology and Science, Vol.14, No.4, pp.419-
426, 2014.

[3] U. Hatnik, et al., “Using ModelSim, Matlab/ Simulink
and NS for simulation of distributed systems,”
Parallel Computing in Electrical Engineering, 2004.
PARELEC 2004, International Conference on,
pp.114-119, Sep., 2004.

[4] W. Li, et al., “Co-simulation platforms for co-design
of networked control systems: An overview,” Control
Engineering Practice, Vol.23, pp.44-56, 2014.

Fig. 9. Layout of implemented IEEE 802.11ac MAC hardware
(AP).

Table 4. Comparison of the implementation results

Design Paper Ref.[12] Ref.[13] Ref.[14]
CMOS
Tech. 65 nm 0.18 μm 0.18 μm 40 nm

Clock
Frequency 320 MHz max.

83 MHz

Core Area 4.8 mm2 60.8 mm2 46 mm2
Gate Count 0.10 M 0.12 M 3.56 M

Memory 33.5 KB

Function MAC
(AP) MAC

MAC/
PHY/

Analog

MAC/
PHY/

Analog
Through-

put
5.1 Gbps

(MU) 150 Mbps 1.1 Gbps

Supported
Standard

11e/a/n/ac,
3-stream (SU),
8-stream (MU)

MIMO

11a
11e/a/g/n,
2-stream

3x3 MIMO

11e/a/b/g/
n/ac,

3-stream
MIMO

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 727

[5] C. Zhu, et al., “MAC enhancements for downlink
multi-user MIMO transmission in next generation
WLAN,” Cosumer Communications and Networking
Conference (CCNC), 2012 IEEE, pp.832-837, 2012.

[6] A. Ben Hassouna, et al., “A model for deploying an
opportunistic MAC protocol in NS-2,” Sciences of
Electronics, Technologies of Information and
Telecommunicationns (SETIT), 2012 6th International
Conference on, pp.604-611, Mar., 2012.

[7] Y. Kim, et al., “MAC implementation for IEEE
802.11 wireless LAN,” ATM (ICATM 2001) and High
Speed Intelligent Internet Symposium, 2001. Joint 4th
IEEE International Conference on, pp.191-195, 2001.

[8] Y. Cai, et al., “Novel design and implementation of
IEEE 802.11 medium access control,” Communi-
cations, 2004 and the 5th International Symposium on
Multi-Dimensional Mobile Communications Proce-
ddings. The 2004 Joint Conference of the 10th Asia-
Pacific Conference on, pp.278-282, Vol.1, Aug., 2004.

[9] Y. C. Yeow, et al., “Design and implementation of
802.11 medium access control protocol using SDL,”
Networks, 2005. Jointly held with the 2005 IEEE 7th
Malaysia International Conference on Communi-
cation., 2005 13th IEEE International Conference on,
pp.5-5, Nov., 2005.

[10] Z. Stamenković, et al., “MAC protocol implemen-
tation in RF-MIMO WLAN,” Electronics, Circuits,
and Systems, 2009. ICECS 2009. 16th IEEE Inter-
national Conference on, pp.303-306, Dec., 2009.

[11] C. Chung, et al., “Implementation of IEEE 802.11n
MAC using design methodology,” Journal of Korea
Information and Communication Society, Vol.34,
No.4, pp.360-367, 2009.

[12] Z. Yang, et al., “Design and verification of high-
throughput IEEE 802.11 MAC-layer hardware IP with
FPGA platform,” Journal of the Chinese Institute of
Engineers, Vol.33, No.4, pp.551-562, 2010.

[13] P. Petrus, et al., “An integrated draft 802.11n
compliant MIMO baseband and MAC processor,”
Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2007 IEEE International, pp.266-
602, 2007.

[14] M. He, et al., “A 40nm dual-band 3-stream
802.11a/b/g/n/ac MIMO WLAN SoC with 1.1Gb/s
over-the-air throughput,” Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2014
IEEE International, pp.350-351, 2014.

Chulho Chung received the B.S.,
M.S., and Ph.D. degrees in electrical
and electronic engineering from the
Yonsei University, Seoul, Korea, in
2003, 2009, and 2016, respectively.
He is currently a senior engineer in
Device Solution Division, Samsung

Electronics Co. Ltd., Korea. His research interests include
the algorithm and implementation of MAC layer for the
wireless multi-media communication system such as
WLAN and WPAN.

Yunho Jung received the B.S., M.S.,
and Ph.D. degrees in department of
electrical and electronic engineering
from Yonsei University, Seoul,
Korea, in 1998, 2000, and 2005,
respectively. From 2005 to 2007, he
was a senior engineer in the Wireless

Device Solution Team, Communication Research Center,
Telecommunication Network Division, Samsung Electro-
nics Co. Ltd., Suwon, Korea. From 2007 to 2008, he was
a research professor at Institute of TMS Information
Technology, Yonsei University, Seoul, Korea. He is
currently an associate professor in the School of
Electronics and Information Engineering, Korea
Aerospace University, Goyang-si, Korea. His research
interests include the signal processing algorithm and
SoC/VLSI implementation for the wireless communi-
cation systems and image processing systems.

Jaeseok Kim received the B.S.
degree in electronic engineering from
Yonsei University, Seoul, Korea in
1977, M.S. degree in electrical and
electronic engineering from KAIST,
Daejeon, Korea in 1979, and Ph. D
degree in electronic engineering from

RPI, NY, USA in 1988. From 1988 to 1993, he was a
Member of Technical Staff at the AT&T Bell Lab., USA.
He was Director of VLSI Architecture Design Lab. of
ETRI from 1993 to 1996. He is currently a professor of
the electrical and electronic engineering department
Yonsei University, Seoul, Korea, and also serves as
director of IT SoC Research Center. His current research
interests include communication (WLAN, UWB, 4G/5G)
SoC design, high performance Multimedia IP (H.264,
HEVC, ISP) design, and SoC Platform architecture.

