• Title/Summary/Keyword: Multi-target detection

Search Result 185, Processing Time 0.03 seconds

Design of Multi-Sensor Data Fusion Filter for a Flight Test System (비행시험시스템용 다중센서 자료융합필터 설계)

  • Lee, Yong-Jae;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.414-419
    • /
    • 2006
  • This paper presents a design of a multi-sensor data fusion filter for a Flight Test System. The multi-sensor data consist of positional information of the target from radars and a telemetry system. The data fusion filter has a structure of a federated Kalman filter and is based on the Singer dynamic target model. It consists of dedicated local filter for each sensor, generally operating in parallel, plus a master fusion filter. A fault detection and correction algorithms are included in the local filter for treating bad measurements and sensor faults. The data fusion is carried out in the fusion filter by using maximum likelihood estimation algorithm. The performance of the designed fusion filter is verified by using both simulation data and real data.

Multi-Small Target Tracking Algorithm in Infrared Image Sequences (적외선 연속 영상에서 다중 소형 표적 추적 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.

Maximum Likelihood Based Doppler Estimation and Target Detection with Pulse Code Modulated Waveform (ML 기법을 이용한 PCM 파형에서의 표적 탐지 및 도플러 추정)

  • Yang, Eunjung;Lee, Heeyoung;Song, Junho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1275-1283
    • /
    • 2014
  • Characteristics of PCM(Pulse Code Modulation) waveform are suitable for target tracking. Especially in terms of dwell time, it is desirable to detect and track a moving target with the single PCM waveform for a MFR(Multi-Function Radar) which carries out multiple tasks. General PCM waveform processing includes Doppler filter bank caused by the characteristics of ambiguity function, to detect target and estimate Doppler frequency, which induces hardware burden and computational complexity. We propose a ML(Maximum Likelihood) based Doppler estimator for a PCM waveform, which is the closed form suboptimal solution and computationally efficient to estimate Doppler frequency and detect a moving target.

Synthetic Aperture Radar Target Detection Using Multi-Cell Averaging CFAR Scheme (다중 셀 평균 기반 CFAR 검출을 이용한 SAR 영상 표적 탐지 기법)

  • Song, Woo-Young;Rho, Soo-Hyun;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.164-169
    • /
    • 2010
  • Since the range and Doppler resolution of the synthetic aperture radar(SAR) image becomes very high, the target detection accuracy can be significantly increased, but the computational burden is also increased. The conventional single-cell based CFAR detector performs the target detection on every single cell basis, thus it causes the serious increment of the computational load. In this paper, the improved two-step MCA-CFAR detector is proposed for the improvement of the target detection as well as the reduction of computational load: the first step is to use the MCA-CFAR, and the second step is to use the single-cell based CFAR detection in the expected target area for final decision. The performance of the proposed algorithm is compared with the conventional single-cell based CFAR and MCA-CFAR on SAR images.

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF

Parallel Multi-task Cascade Convolution Neural Network Optimization Algorithm for Real-time Dynamic Face Recognition

  • Jiang, Bin;Ren, Qiang;Dai, Fei;Zhou, Tian;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4117-4135
    • /
    • 2020
  • Due to the angle of view, illumination and scene diversity, real-time dynamic face detection and recognition is no small difficulty in those unrestricted environments. In this study, we used the intrinsic correlation between detection and calibration, using a multi-task cascaded convolutional neural network(MTCNN) to improve the efficiency of face recognition, and the output of each core network is mapped in parallel to a compact Euclidean space, where distance represents the similarity of facial features, so that the target face can be identified as quickly as possible, without waiting for all network iteration calculations to complete the recognition results. And after the angle of the target face and the illumination change, the correlation between the recognition results can be well obtained. In the actual application scenario, we use a multi-camera real-time monitoring system to perform face matching and recognition using successive frames acquired from different angles. The effectiveness of the method was verified by several real-time monitoring experiments, and good results were obtained.

Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network

  • Sung, Minsung;Yu, Son-Cheol
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.

A study of implementation of multi-target tracking system (다중 표적 추적기 실현화 연구)

  • 이양원;김영주;이봉기;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.837-841
    • /
    • 1990
  • Track While Scan(DS) system which can track the multitargets in dense target environment is designed. There are three tasks to be performed: I) Target Detection and 'plot' formation, ii) Plot to track association and, iii) Track updatement. The conventional approach has been to tackle each of these tasks separately. This paper outlines a method for jointly optimizing all the three tasks and presents implementation aspects.

  • PDF

Performance Improvement of Pedestrian Detection using a GM-PHD Filter (GM-PHD 필터를 이용한 보행자 탐지 성능 향상 방법)

  • Lee, Yeon-Jun;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.150-157
    • /
    • 2015
  • Pedestrian detection has largely been researched as one of the important technologies for autonomous driving vehicle and preventing accidents. There are two categories for pedestrian detection, camera-based and LIDAR-based. LIDAR-based methods have the advantage of the wide angle of view and insensitivity of illuminance change while camera-based methods have not. However, there are several problems with 3D LIDAR, such as insufficient resolution to detect distant pedestrians and decrease in detection rate in a complex situation due to segmentation error and occlusion. In this paper, two methods using GM-PHD filter are proposed to improve the poor rates of pedestrian detection algorithms based on 3D LIDAR. First one improves detection performance and resolution of object by automatic accumulation of points in previous frames onto current objects. Second one additionally enhances the detection results by applying the GM-PHD filter which is modified in order to handle the poor situation to classified multi target. A quantitative evaluation with autonomously acquired road environment data shows the proposed methods highly increase the performance of existing pedestrian detection algorithms.

Development of 3-D Multi-Function Radar High-Speed Real-Time Signal Processor (3차원 다기능 레이더 고속 실시간 신호 처리기 개발)

  • Roh, Ji-Eun;Choi, Byung-Gwan;Lee, Hee-Young;Yang, Jin-Mo;Lee, Kwang-Chul;Lee, Dong-Hwi;Jung, Rae-Hyung;Kim, Tae-Hwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1045-1059
    • /
    • 2011
  • A 3-D multi-function radar(MFR) is a modern radar to provide various target information, such as range, doppler, and angle by performing surveillance, multiple target tracking, and missile guidance. In this paper, we introduced a real-time radar signal processor(RSP), which is a crucial component of MFR with its design, implementation using high-speed multiple DSP, and performance. Additionally, we verified that several advanced signal processing algorithms were well-performed in our RSP, such as MCA-CFAR algorithm for target detection in clutter environment, range and velocity measurement algorithm using discriminator estimation, and noise jammer detection algorithm using local minimum selection.