• Title/Summary/Keyword: Multi-step test

Search Result 145, Processing Time 0.027 seconds

Improvement of charging efficiency of AGM lead acid battery through formation pattern research (Formation pattern 연구를 통한 AGM 연축전지의 충전 효율 향상)

  • Kim, Sung Joon;Son, Jeong Hun;Kim, Bong-Gu;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • In order to improve fuel economy and reduce CO2, HEV adopts ISG system as a standard. This ISG system increased the electric load that the battery had to bear, and the number of starting increased rapidly. AGM Lead Acid batteries have been developed and used, but the charging time is about three times longer as the electrolyte amount control during formation must be maintained at a higher level compared to conventional lead-acid batteries. In this study, we tried to shorten the charging time by increasing the charging efficiency through the optimization of the formation pattern. In order to optimize the Formation Pattern, 10 charging steps and 6 discharging steps were applied to 16 multi steps, and the charging current for each step was controlled, and the test was conducted under 4 conditions (21 hr, 24 hr, 27 hr, 30 hr). As a result of simultaneous application of multi-step and discharge step, it was verified that minimizing the current loss and eliminating the sudden polarization during charging contributes to the improvement of charging efficiency. As a result, it showed excellent results in reducing the charging time by about 30 % with improved charging efficiency compared to the previous one.

Accuracy of one-step automated orthodontic diagnosis model using a convolutional neural network and lateral cephalogram images with different qualities obtained from nationwide multi-hospitals

  • Yim, Sunjin;Kim, Sungchul;Kim, Inhwan;Park, Jae-Woo;Cho, Jin-Hyoung;Hong, Mihee;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Kim, Young Ho;Lim, Sung-Hoon;Sung, Sang Jin;Kim, Namkug;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.3-19
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the accuracy of one-step automated orthodontic diagnosis of skeletodental discrepancies using a convolutional neural network (CNN) and lateral cephalogram images with different qualities from nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993 cephalograms from two hospitals were used for training and internal test sets and 181 cephalograms from eight other hospitals were used for an external test set. They were divided into three classification groups according to anteroposterior skeletal discrepancies (Class I, II, and III), vertical skeletal discrepancies (normodivergent, hypodivergent, and hyperdivergent patterns), and vertical dental discrepancies (normal overbite, deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as a CNN classifier model. Diagnostic performance was evaluated by receiver operating characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean area under the curve and the mean accuracy of all classifications were high with both internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model succeeded in creating good separation between three classification groups. Grad-CAM figures showed differences in the location and size of the focus areas between three classification groups in each diagnosis. Conclusions: Since the accuracy of our model was validated with both internal and external test sets, it shows the possible usefulness of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still needs technical improvement in terms of classifying vertical dental discrepancies.

Target Tracking Performance Verification of Surveillance Data Processing System for Air Traffic Control (항공관제용 감시자료처리시스템 항적 추적 성능 검증)

  • Eun, Yeonju;Jeon, Dae-Keun;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.171-181
    • /
    • 2012
  • As a sub-system of an air traffic control system, SDP(Surveillance Data Processor) provides with the system tracks of aircraft using the surveillance sensor data from various air traffic surveillance sensors, such as radars. Therefore, the high accuracy of tracking results is a crucial requirement for safe flights, and verification of the required system performance of SDP is an essential step in development. Moreover, the quantitative evaluation of target tracking accuracy is important for newly developed SDP, since there are several tracking methods for Multi-Sensor Multi-Target Tracking, such as MRT(Multi Radar Tracking), inevitably required as the main function of SDP. In this study, definition of required system performances, establishment of test environment, and test results for MRT performance evaluation of SDP, which is being developed in KARI(Korea Airspace Research Institute) are presented.

Application of Multi-Frontal Method in Collaborative Engineering Environment

  • Cho, Seong-Wook;Choi, Young;Lee, Gyu-Bong;Kwon, Ki-Eak
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.51-60
    • /
    • 2003
  • The growth of the World Wide Web and the advances in high-speed network access have greatly changed existing CAD/CAE environment. The WWW has enabled us to share various distributed product data and to collaborate in the design process. An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, are very important technological components for the interoperability in the advanced design and manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a distributed CAD/CAE environment that is integrated on the network by CORBA and product model data standard STEP. Several prototype application modules were implemented to verify the proposed concept and the test result is discussed. Finite element analysis server are further distributed into several frontal servers for the implementation of distributed parallel solution of finite element system equations. Distributed computation of analysis server is also implemented by using CORBA for the generalization of the proposed method.

Self-Calibration of High Frequency Errors of Test Optics by Arbitrary N-step Rotation

  • Kim, Seung-Woo;Rhee, Hyug-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • We propose an extended version of multi-step algorithm of self-calibration of interferometric optical testing instruments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is intentionally provided in part rotation. This generalized algorithm adopts least squares technique to determine the true azimuthal positions of part rotation and consequently eliminates calibration errors caused by rotation inaccuracy. In addition, the required numbers of part rotation is greatly reduced when higher order spatial frequency terms are of particular importance.

  • PDF

A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio (세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.

System Design for LSM Section Switching Test (LSM 섹션전환시험을 위한 시스템 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young;Shin, Seung-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1258-1259
    • /
    • 2011
  • LSMs are installed under girders along the long track. In order to improve the efficiency of the LSM, long stator LSM should be divided into the specified length and the propulsion inverters should have the system topology to generate high voltage and current for LSMs. This paper presents a system topology with two-step inverter in order to generate high voltage in inverter. A LSM propulsion system is developed and implemented in Maltab/Simulink. A system model of the two-step Inverter is applied to developed model. This paper demonstrates through simulation, advantages of multi-step inverter. The conclusions can serve the design of LSM propulsion system.

  • PDF

A Study on Machining of Uncut Volume at the Boundary Region of Curved Surfaces (곡면 경계부 미절삭 체적의 잔삭 가공에 관한 연구)

  • Maeng, Hee-Young;Yim, Choong-Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.251-259
    • /
    • 2010
  • It is presented in this study a new efficient intelligent machining strategy, which can be used to remove the uncut volume at the boundary region of curved surfaces caused by cutter interference. The geometric form definitions and recognition of topological features of the surface triangulation mesh are used to generate cutter paths along successive and interconnected steepest pathways, that minimize the cusp height left after flat end milling. In order to machine the uncut volume gradually, the z-map cutter centers are adjusted to avoid cutter interference for the 6 kinds of avoidance types. And then, the generative subsequent paths are sequenced to determine the second step cutter paths for the next uncut volume. For the 2 kinds of test models with convex and concave surface region, the implemented software algorithm is evaluated by investigating the residual swelling of uncut volume for each machining step.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

A Study on Secondary Defects in Silicon after 2-step Annealing of the High Energy $^{75}AS^+$ Ion Implanted Silicon (고에너지비소 이온 주입후 2단계 열처리시 2차결함에 대한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.796-803
    • /
    • 1998
  • Intrinsic and proximity gettering are popular processes to get higher cumulative production yield and usually adopt multi-step annealing and high energy ion implantation, respectively. In order to test the combined processed of these, high energy \ulcornerAs\ulcorner ion implantation and 2-step annealing process were adopted. After the ion implantation followed by 2-step annealing, the wafers were cleaved and etched with Wright etchant. The morphology of cross section on samples was inspected by FESEM. The concentration profile of As was measured by SRP. The location and type of secondary defects inspected by HRTEM were dependent on the 1st annealing temperatures. That is, a line of dislocation located at $1.5mutextrm{m}$ apart from the surface at $600^{\circ}C$ lst annealing was changed to some dislocation lines or loops nearby the surface at 100$0^{\circ}C$. The density of dislocation line was reduced but the size of the defects was enlarged as the temperature increased.

  • PDF