• 제목/요약/키워드: Multi-step excavation

검색결과 14건 처리시간 0.026초

시공단계를 고려할 수 있는 유한요소 해석 모델 개발 (Development of finite element analysis model for multi-step excavation problem)

  • 이연규
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.326-334
    • /
    • 1996
  • In underground construction the multi-step excavation sequence is commonly adopted for the convenience of the underground work. A numerical simulation method which is capable of analyzing the effects of excavation sequence on the stability of the opening is greatly needed. In this study a two dimensional finite element code was developed based on the effective numerical algorithm for the multistep excavation. The practical applicability of the model was verified for the simplified excavation sequences.

  • PDF

록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발 (DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS)

  • 이연규;이정인;조태진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

다단계 터널굴착시 계측된 증분변위를 이용한 역해석 기법의 개발 (Development of the Back Analysis Technique Using Incremental Displacements Measured in a Multistep Excavation)

  • 이연규;이정인
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.123-136
    • /
    • 1997
  • 구조물의 형상 변화를 연속적으로 고려할 수 있는 유한요소법 원리에 기초하여 탄성지반내에 단계적 터널굴착시 임의의 굴착단계에서 발생한 증분변위와 굴착전 암반내에 존재하는 초기응력의 크기가 선형관계에 있음을 유도하였다. 즉, 총변위가 아닌 임의 단계에서 계측된 증분변위만으로 탄성지반내 초기음력의 역산이 가능함을 이론적으로 증명하였다. 이러한 이론적 관계식에 기초하여 다단계 터널굴착시 계측된 증분변위를 이용하여 초기응력을 역산할 수 있는 역해석 프로그램을 작성하였다. 간단한 예제를 통하여 구성한 프로그램의 정확성과 현장 적용 가능성을 검토하였다.

  • PDF

시공 단계를 고려한 터널의 역해석에 관한 연구 (Back Analysis of Tunnel for multi-step Construction)

  • 김선명;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

A two-step interval risk assessment method for water inrush during seaside tunnel excavation

  • Zhou, Binghua;Xue, Yiguo;Li, Zhiqiang;Gao, Haidong;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.573-584
    • /
    • 2022
  • Water inrush may occur during seaside urban tunnel excavation. Various factors affect the water inrush, and the water inrush mechanism is complex. In this study, nine evaluation indices having potential effects on water inrush were analysed. Specifically, the geographic and geomorphic conditions, unfavourable geology, distance from the tunnel to sea, strength of the surrounding rock, groundwater level, tidal action, cyclical footage, grouting pressure, and grouting reinforced region were analysed. Furthermore, a two-step interval risk assessment method for water inrush management during seaside urban tunnel excavation was developed by a multi-index system and interval risk assessment comprised of an interval analytic hierarchy process, fuzzy comprehensive evaluation, and relative superiority analysis. The novel assessment method was applied to the Haicang Tunnel successfully. A preliminary interval risk assessment method for water inrush was performed based on engineering geological conditions. As a result, the risk level fell into a risk level IV, which represents a section with high risk. Subsequently, a secondary interval risk assessment method was performed based on engineering geological conditions and construction conditions. The risk level of water inrush is reduced to a risk level II. The results agreed with the current tunnel situation, which verified the reliability of this approach.

굴착과정에서 록볼트로 보강된 절리암반의 점소성 거동 분석 (A Study on the visco-plastic behavior of the jointed rock mass reinforced by rockbolts during excavation)

  • 이연구;이정인;조태진
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.123-133
    • /
    • 1995
  • A two dimensional visco-plastic finite element model capable of handling the multistep excavaton was developed for investigating the effect of excavation-support sequences on the behaviour of underground openings in the jointed rock mass. Ubiquitous joint pattern was considered in the model and joint properties in each set were assumed to be identical. Passive, fully-grouted rockbolts were considered in the model. Visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Coulomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-support sequences. The reliability of the model to the stability analysis for the underground excavation in practice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Earth pressure on a vertical shaft considering the arching effect in c-𝜙 soil

  • Lee, In-Mo;Kim, Do-Hoon;Kim, Kyoung-Yul;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.879-896
    • /
    • 2016
  • A new earth pressure equation considering the arching effect in $c-{\phi}$ soils was proposed for the accurate calculation of earth pressure on circular vertical shafts. The arching effect and the subsequent load recovery phenomenon occurring due to multi-step excavation were quantitatively investigated through laboratory tests. The new earth pressure equation was verified by comparing the test results with the earth pressures predicted by new equation in various soil conditions. Resulting from testing by using multi-step excavation, the arching effect and load recovery were clearly observed. The test results in $c-{\phi}$ soil showed that even a small amount of cohesion can cause the earth pressure to decrease significantly. Therefore, predicting earth pressure without considering such cohesion can lead to overestimation of earth pressure. The test results in various ground conditions demonstrated that the newly proposed equation, which enables consideration of cohesion as appropriate, is the most reliable equation for predicting earth pressure in both ${\phi}$ soil and $c-{\phi}$ soil. The comparison of the theoretical equations with the field data measured on a real construction site also highlighted the best-fitness of the theoretical equation in predicting earth pressure.

지하수의 천이흐름을 고려한 지하구조계의 유한요소해석 (Finite Element Analysis of Underground Structural Systems Considering Transient Flow)

  • 김문겸;이종우;박성우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 1996
  • In this paper, behaviour of underground structural systems due to excavation and change of groundwater level is analyzed using finite elements. Equilibrium equations based on the effective pressure theory and transient flow equations considering the groundwater level are derived. Integration equations are derived using Galerkin's approximation and time dependent analysis is employed to compute groundwater level change and pore pressures. This computed pore pressures are employed in equilibrium equations and then finally displacements and stresses are computed. The developed program is applied to analyze the behaviour of ground excavation below the groundwater level. The program is also applied to multi-step excavation at the same model. The results show that the displacements of the ground surface are much influenced by the change of the groundwater level. Therefore, it is concluded that the change of the groundwater level should be considered in order to analyze the behaviour of the underground structural systems accurately

  • PDF

유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법 (Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media)

  • 구정회;홍순조;김문겸;황학주
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.109-122
    • /
    • 1993
  • 유체포화 다공매체에서의 단계적 굴착시 형상변화로 인한 구조거동을 시간종속적 배수이론으로 예측하기 위한 유한요소해석방법을 제시하였다 시간종속적 배수거동을 고려한 유한요소방정식을 유도하기 위하여 Biot의 방정식을 사용하였다. 이론해가 존재하는 재하 하중에 의한 시간종속적 배수거동 문제의 해석과 완전배수거동시 1단계 굴착과 다단계 굴착시의 변형이 동일한가를 확인하므로써 유도된 방법의 타당성을 검증하였다. 1차원 및 2치원 문제에 대하여 시간종속적 배수모형과 완전배수모형에 의한 결과를 비교하여 그 차이를 예시하였다. 또한 단계적 굴착시 굴착속도 및 투수계수의 변화에 따른 영향도 분석하였다. 수치해석 시뮬레이션을 통해, 다공매체지반의 굴착해석시에는 시간종속적 배수거동에 근거한 해석이 보다 신뢰할 수 있음을 고찰하였다.

  • PDF

3차원 터널해석에 의한 강관 다단 그라우팅의 보강효과 (The Application of Nonlinear 3-D Tunnel Analysis Program for the Improved Efects of Steel Pipe Reinforced Multi Step Grouting Method)

  • 김형탁;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.25.2-38
    • /
    • 1995
  • the Effect of steel pipe reinforced multi-step grouting(SPRG) technique to inrove the ground far ahead of the excavation face was investigated by means of numerical analysis. It was found taht the nonlinear 3-D FEM program performed well to evaluate the usefulness of the SPRG technique in soft ground tunnelling, and about 20% of settlement control in this particular case possible. Therefore in urban subway tunnel construction, the New Austirial Tunnelling Method can be satisfactorily applied even in poor ground conditon with aid of the SPRG technique.

  • PDF