• Title/Summary/Keyword: Multi-source Spatial Data

Search Result 42, Processing Time 0.025 seconds

Quantitative Assessment of Input and Integrated Information in GIS-based Multi-source Spatial Data Integration: A Case Study for Mineral Potential Mapping

  • Kwon, Byung-Doo;Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.10-21
    • /
    • 2004
  • Recently, spatial data integration for geoscientific application has been regarded as an important task of various geoscientific applications of GIS. Although much research has been reported in the literature, quantitative assessment of the spatial interrelationship between input data layers and an integrated layer has not been considered fully and is in the development stage. Regarding this matter, we propose here, methodologies that account for the spatial interrelationship and spatial patterns in the spatial integration task, namely a multi-buffer zone analysis and a statistical analysis based on a contingency table. The main part of our work, the multi-buffer zone analysis, was addressed and applied to reveal the spatial pattern around geological source primitives and statistical analysis was performed to extract information for the assessment of an integrated layer. Mineral potential mapping using multi-source geoscience data sets from Ogdong in Korea was applied to illustrate application of this methodology.

Quantitative Comparison of Probabilistic Multi-source Spatial Data Integration Models for Landslide Hazard Assessment

  • Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.622-625
    • /
    • 2004
  • This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.

  • PDF

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

Data Update on Multi-Scale Databases (다중축척 공간 데이터베이스의 데이터 갱신)

  • Kwon O-Je;Kang Hae-Kyong;Li Ki-Joune
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.239-249
    • /
    • 2004
  • This paper discusses on the update problem of multi-scale databases when the multi-scale databases, which is several spatial databases covering the same geographic area with different scales, are derived from an original one. Although the integrity between original and derived multi-scale databases should be maintained, most of update mechanisms do not 6respect it since the update mechanisms have assumed that the update of source objects propagates to objects directly derived from the source. In order to maintain the integrity of multi-scale databases during updates, we must propagate updates of sources to objects derived from both the updated source objects and other related objects. It is an important functional requirement of multi-scale database systems, which has not been supported by existing spatial database systems. In this paper, we propose a set of rules and algorithms for the update propagation and show a prototype developed on ArcGIS of ESRI. Our update mechanism provides with not only the consistency between multi-scale databases but also incremental updates.

  • PDF

Multi-level Load Shedding Scheme to Increase Spatial Data Stream Query Accuracy (공간 데이터 스트림 질의 정확도 향상을 위한 다단계 부하제한 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8370-8377
    • /
    • 2015
  • In spatial data stream management systems, it is needed appropriate load shedding algorithm because real-time input spatial data streams could exceed the limitation of main memory. However previous researches, lack regard for input ratio and spatial utilization rates of spatial data streams, or the characteristics of data source which generates data streams with spatial information efficiently, can lead to decrease the performance and accuracy of spatial data stream query. Therefore, multi-level load shedding scheme for spatial data stream management systems is proposed to increase the spatial query performance and accuracy. This proposed scheme limits overloads in relation to the input rate and the characteristics of data source first, and then, if needed, query data representing low query participation probability based on spatial utilizations are dropped relatively. Our experiments show that the proposed method could decrease load shedding frequency for previous researches by more than 11% despite query results accuracy and query performance are superior at 0.04% and 3%.

Application of Fuzzy Information Representation Using Frequency Ratio and Non-parametric Density Estimation to Multi-source Spatial Data Fusion for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.114-128
    • /
    • 2005
  • Fuzzy information representation of multi-source spatial data is applied to landslide hazard mapping. Information representation based on frequency ratio and non-parametric density estimation is used to construct fuzzy membership functions. Of particular interest is the representation of continuous data for preventing loss of information. The non-parametric density estimation method applied here is a Parzen window estimation that can directly use continuous data without any categorization procedure. The effect of the new continuous data representation method on the final integrated result is evaluated by a validation procedure. To illustrate the proposed scheme, a case study from Jangheung, Korea for landslide hazard mapping is presented. Analysis of the results indicates that the proposed methodology considerably improves prediction capabilities, as compared with the case in traditional continuous data representation.

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

The Consistency Assessment of Topological Relationships For a Collapse Operator in Multi-Scale Spatial Databases (다중축척 공간 데이터베이스의 축소연산자를 위한 위상관계 일관성 평가)

  • Kang Hae-Kyong;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.837-848
    • /
    • 2005
  • A multi-scale database is a set of spatial database, covering same geographic area with different scales and it can be derived from pre-existing databases. In the derivation processes of a new multi-scale spatial database, the geometries and topological relations on the source database can be transformed and the transformation can be the cause of the lack of integrity Therefore, it is necessary to assess the transformation whether it is consistent or not after the derivation process of a new multi-scale database. Thus, we propose assessment methods for the topological consistency between a source database and a derived multi-scale database in this paper. In particular, we focus on the case that 2-dimensional objects are collapsed to 1-dimensional ones in the derivation process of a multi-scale database. We also describe implementation of the assessment methods and show the results of the implementation with experimental data.

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.