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Abstract : Recently, spatial data integration for geoscientific application has been regarded as an important task of various
geoscientific applications of GIS. Although much research has been reported in the literature, quantitative assessment of
the spatial interrelationship between input data layers and an integrated layer has not been considered fully and is in the
development stage. Regarding this matter, we propose here, methodologies that account for the spatial interrelationship and
spatial pattérns in the spatial integration task, namely a multi-buffer zone analysis and a statistical analysis based on a
contingency table. The main part of our work, the multi-buffer zone analysis, was addressed and applied to reveal the
spatial pattern around geological source primitives and statistical analysis was performed to extract information for the
assessment of an integrated layer. Mineral potential mapping using multi-source geoscience data sets from Ogdong in

Korea was applied to illustrate application of this methodology.
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Infroduction

New advances and rapid development of various
data acquisition techniques and computer resources
have fostered the use of integrated analysis of spa-
tial data from multiple sources in order to make
optimized decisions in the field of Geographic Infor-
mation System (GIS). For efficient extraction of the
higher level information from multi-source spatial
data, GIS can be effectively used for spatial man-
agement and manipulation functionality within spa-
tial databases. Though GIS provides some spatial
analysis functionalities such as network analysis,
proximity analysis and overlay analysis, traditional
GIS functionality focuses on visual representation,
not semantics and is developed with insufficient
mathematical understanding of the data. Thus, insuf-
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ficient consideration for geoscience data sets may
result in a severely erroneous decision-making (Park
et al., 2003).

Since the early 1990s, among GIS application
issues dealing with geoscience data, computer-based
methods for spatial data integration using multi-
source geoscience data sets have been studied;
Bayesian approaches (Chung and Fabbri, 1999; Park
et al, 2003), weight of evidence (Bonham-Carter
and Agterberg, 1988), evidential belief function the-
ory (Moon, 1990), fuzzy set theory (An -et al,
1991), artificial neural network (Lee and Kwon,
1995).

However, with regard to quantitative modeling
framework of the data, the influence of input lay-
ers and error assessment for the integration task has
not as yet been forthcoming. Most research has
focused on the representation of data sets and inter-
pretation of a resultant integrated layer, not conclud-
ing on the assessment of quality and spatial pattern
of input layers in the scope of exploratory data
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Fig. 1. Schematic diagram showing the processing flow used in this study.

analysis. Regarding exploratory data analysis,
although schemes are newly proposed in geostatis-
tics, they have not as yet been in conjunction with
the spatial data integration. A

The main purpose of this study is to propose a
kind of hybrid-type spatial analysis scheme in a
spatial data integration framework. This work con-
sists of three parts. One part is the implementation
of spatial integration for mineral potential mapping
using multi-source geoscience data sets. Another part
is the exploration of input layers, as a kind of pre-
processing and/or post-processing. The third part is
quantitative assessment between a resultant inte-
grated layer and the input layers, as a kind of post-
processing. As an exploration of input layers, or
supplementary information with respect to spatially
integrated information, “multi-buffer zone analysis”,
which is an extended version of the buffering opera-
tion, is newly proposed and applied to multiple geo-
science data. Among the known spatial integration
methodologies, certainty factor (CF) estimation was
applied for mineral potential mapping. For quantita-

tive assessment of a spatially integrated layer or

extraction of statistical information, statistical analy-
sis based on a contingency table was carried out.

This paper is structured as follows: in the next
section, we give schemes and the rationale applied
in this study. Then, we apply these schemes to real
data sets from Ogdong in Korea and discuss the
results, Finally, we conclude with a summary and
remarks.

Applied Schemes

In this study, the CF estimation approach was
applied for the data integration scheme. Multi-buffer
zone analysis and statistical analysis, which do not
depend on the algorithm used for integrating the
data layers, were performed for the extraction of the
supplementary information towards spatially inte-
grated information (Fig. 1).

CF estimation

Among various spatial data integration schemes,
CF estimation, one of data-driven. methods which
use known target information, was applied. Because
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the main purpose of this study is the development
of quantitative analysis in the spatial data integra-
tion task, rather than the application of the certain
data integration method, short explanation of CF
estimation is given. Detail theoretical background for
the CF estimation is discussed in Shortliffe and
Buchanan (1975) and Chung and Fabbri (1993).

CF estimation measures certainty level of condi-
tional probability with respect to a priori probabil-
ity given a certain evidence. A certainty factor (CF)
at p for the kth layer, denoted by CF: (p), is
defined as the change in certainty that the proposi-

Prob, (T,|vi(p))—Proby(T,)
- Prob,(T,|vi(p))(1-Prob,(T,))
Prob, (T,|vi(p))—Proby(T,)
Prob, (T;)(1-Proby(T,))

CF«(p)

where,

Probi(Ty): a priori probability that a pixel p con-
tains certain deposit before any evidence is not
given.

CF(p)+CF;j(p)-CF;(p)- CF;(p)

tion (a pixel p contains deposits of type D) is true,
from without the evidence at p to given the evi-
dence at p in the kth layer (Chung and Fabbri,
1993). CF’s are reals ranging from —1 to 1. Posi-
tive numbers for CF correspond to an increase in
certainty in a proposition after the evidence is
observed, whereas negative numbers correspond to a
decrease in certainty. The extreme values —1 and 1
represent “no” and “yes”, respectively.

The definition discussed by Heckerman (1986) is
followed.

if Proby(T,|vy(p))>Proby(T,)

(D

if Proby(Ty|vi(p)) <Proby(T,)

Probi(Tylvi(p)): the conditional probability that a
pixel p contains certain deposit given the evidence.

The rules for combining CF values (CF(p) and
CFE(p)) are as follows:

CFi(p), CFi(p)>0

CFeompine(CFi(p), CF;(p)) =  (CFi(p) + CF;(p))/(1-min(CF;(p), CFj(p))) CFi(p),CFj(p) different sign

CFi(p) +CF;j(p) + CFi(p) - CF(p)

Multi-Buffer Zone Analysis

A general schematic view for multi-buffer zone
analysis is outlined in Fig. 2. This approach is not
a technical improvement of the GIS processing algo-
rithm, but a somewhat practical approach based on
a GIS buffering operation. The buffering operation
around features is a very useful and standard GIS
capability. A buffer is a newly generated polygon
enclosed in an area within a specified distance from
a certain primitive source and is an expression of
the influence zone with respect to a certain dis-
tance. Specifically, multi-buffer zone analysis focuses
on the change of a spatially distributed pattern in
buffered zones or buffering boundaries along with
an equi-interval or a distance. In multi-buffering, a
clump operator examines every cell to see if the

CFi(p),CFy(p)<0
@

dominant circular pattern with respect to a given
source can be incrementally determined by cell
counting. Through this scheme, spatial behaviors of
multiple data layers around given source primitives
can be extracted.

Generally, buffer zones can be created around
three data types: ‘point’, ‘line’, and ‘polygon’. In
geo-based source primitives, features such as ore
deposits, seismic epicenters or various types of point
sources causing natural hazards are compatible with
‘point’ data types. Features such as surface fault
lines and drainage networks are compatible with
‘line’ types and features such as mineral occur-
rence zones, alteration zones and geological pat-
terns are compatible with ‘polygon’ data types.

In this study, the locations of mineral occurrence
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Fig. 2. General procedure for multi-buffer zone analysis.

zones are mainly dealt with as source primitives for
assimilation into the spatial integration task. Spatial
geological patterns around primitives of significant
geological features (e.g. mineral occurrence zones)
can be efficiently utilized to delineate complex geo-
logical behaviors, particularly when handing multi-
ple data sets of multi-sources or from different
backgrounds.

Measures of Spatial Inierrelcﬁonship

Many different measures of association of data
sets have been proposed. In the most general case
of two thematic maps, each with multiple classes,
the most common measures are based on a contin-
gency table (Bonham-Carter, 1994). A contingency
table for cross-tabulation is the table showing dis-
crete frequency or cell-counting in the form of a
matrix. After a contingency table is éalculated, sev-
eral statistics related to the measure of association
can be obtained to quantitatively assess integrated
results or layers.

In this study, entropy measures are used. Entropy
measures use proportions and have an advantage
over chi-squared measures by being unaffected by
measurement units. For entropy measures, let the
table between map A and B be called matrix T,
with elements T;, where there are i=12, n
classes of map B (rows) and j=1,2,- ;m classes of
map A (columns). The marginal totals of T are

defined as T for the sum of the ith row, T; for the
sum of the jth column, and T. for the grand total
summed over rows and columns.

To compute which  vary
between O and 1, the area proportions give the esti-
mates of probabilities, by dividing each element by
the grand total. Assuming that the proportions

matrix for map A and map B has been determined

entropy  measures,

from T, entropy measures (H) are defined by the
relations below.

©)

H= 2,:H(A)+H(B)—H(A,B):|

H(A)+H(B)

entropy of A: H(A) =—2%ln%,
oo
entropy of B: H(B) =_z

i=1

Ty
T T,

joint entropy of: H(A,B) = _ZZTUIHTU

i=1j=1

In addition, the Yule coefficient and odds ratio are
calculated to reveal the dominant layer that influ-
ences the integrated layer. The Yule coefficient and
odds ratio are defined as follows:

a_A/Tll/TZI_«/TIZ/I‘ZZ 0 _T11T12 (4)

- ST/ T+ T/ Ty T, Ty
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Fig. 3. The location map of the study area. Known polymetallic mines in the study area are represented as triangle marks,

draped over Landsat Thematic Mapper band 5 imagery.

Where, AﬁB:T“, Am§=T21, KHB:le,
A('\B = T22

Although the statistics above are mainly utilized
in the comparison of binary maps, measures of
associations between binary patterns can be applied
to the comparison of multi-class maps by treating
each combination of map classes as a binary. The
Yule coefficient ranges in value between —1 and +1,
similar to a correlation coefficient. The odds ratio is
always positive, being greater than 1 for patterns
that are positively associated, 1 if the two patterns
are independent and less than 1 if they are nega-
tively associated.

The Study Area and
GIS data layers

For the case study of this proposed scheme for
mineral potential mapping, multiple geoscience data
sets covering the Ogdong in Korea (Fig. 3) were
used. It should be pointed out that the purpose of
this case study is to illustrate the applicability of
the proposed methodology in practice, not to reveal
the local characteristics of the study area.

Geologically, the major part of the study area is
composed of metasediments and most of the poly-

metallic mines are located in the western and east-
emn areas. Ore deposits are mainly located within
the thick limestone series of the Joseon Supergroup
and the granite; the rich elements of ore deposits
are iron (Fe), lead (Pb), and zinc (Zn).

At this time, field or airborne surveyed data sets
are in the process of being geocoded into an
exchangeable format suitable to GIS environments.
Therefore, most data sets in this study were origi-
nally text or raw format and pre-processing for
geocoding and geo-registering process was carried
out.

The GIS-derived data set lists are shown in Table
1. As for the geophysical data sets, airborne sur-
veyed data were composed of: residual magnetic
anomaly, radiometric anomaly of gamma ray, potas-
sium (K), thorium (Th) and uranium (U). And as
for the geochemical data sets, ground surveyed data
of lead (Pb), zinc (Z), copper (Cu), silver (Ag),
cadmium (Cd) and U were used. For U, both air-
borne and surface data sets were obtained, but they
were separately processed. Geophysical data sets,
originally in vector format, were converted to raster
format and geochemical data sets, which were
obtained from widely distributed stream rock sam-
ples in the study area, were interpolated to obtain
grid format data. The geological map, one of basic
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Table 1. GIS data layers used in this study

T Airborme geophysical data sets . .. .
ype (unit: cpu, gamma) Geochemical data sets (unit: ppm) Geologial
map
Class gammaray K Th U Mag Ag cd Cu Pb 0} Zn
min 200 10 5 4 60 010 002 1000 1000 170 17.00 Allvim
U]

U e 250 15 6 5 35 017 050 1350 2090 550 3622
min 251 16 7 6 -3 018 051 1351 2091 551 3623 Daedong

2 max 350 26 10 7 20 081 098 3510 4900 1290 5957 system
min 351 27 11 8 -19 082 099 3511 4901 1291 5958 Pyeongan

3 max 450 3% 139 5 209 420 9330 11480 2950 133.10 supergroup

, ™Mo 451 37 14 10 6 210 421 9331 11481 2951 13311  Joseon supergroup
max 550 47 17 11 20 309 1040 15140 17580 4470 184.00 (Ordovician)
min 551 48 18 12 21 310 1041 15141 17581 4471 18401  Joseon supergrup

S max 650 58 21 14 80 721 1480 239.10 26730 6700 25295 (Cambrian)

g Mo 651 59 22 15 81 722 1481 23911 26731 6701 25296 Pegmatitic
max 750 68 24 16 140 1596 1721 699.00 569500 6948 49500 migmatite
max 850 78 28 18 200 quartzite
min 851 79 29 19 201 o

8 max 950 90 30 2 30 Granitic gneisses

g ™ Acidic dike
max

o M Granite
max

jp  min Porphyrit
max orphyrite

data sets for this approach, was fully geo-registered
into the GIS with the geometric features and their
database attributes.

After this pre-processing, all data sets were built
into a cell-based database with 30 m resolution and
were reclassified with respect to the feature of each
data set. In addition, seven known mines in the
study area were used as prior evidences in the spa-
tial integration and as sources in the multi-buffer
zone analysis.

Results

Spatial integration using CF estimation

Spatial integration using CF estimation was per-
formed using all the data sets for favorable map-
ping of mineral occurrences. Firstly, in order to
carry out the spatial integration, the study area was
divided into a number of non-overlapping unique

condition subareas by overlaying the input data lay-
ers specified in the GIS database (Chung and Fab-
bri, 1993). An image consisting of the unique
condition subareas was generated, where the unique
condition subareas mean that pixel values in a sub-
area have a unique identification number, unique to
that subarea. After generating the unique condition
subareas, we computed the CF based on the prior
probability and the bivariate conditional probabili-
ties of the known mineral deposit occurrences.
Afterwards, the CF was computed by combining the
certainty factor generated by the above process
using a combination mle. As a result of the cer-
tainty factor estimation, CF values generally lay
between —1 and 1. However, in this study, to
emphasize the high potential zones, we classified the
resulting image as follows: all the pixel values were
sorted in descending order, then the ordered pixel
values were classified per high rank 0.5%.
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Fig. 4. Spatial integration result using CF estimation.
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Fig. 5. Buffering zones on the surface relief image draped over the reclassified geological map.

Through this process, the final integrated result
was generated as in Fig. 4. Overall, the resultant
layer fitted the real situation, showing in situ min-
eral occurrences. This is basically caused by the
intrinsic characteristics of the CF estimation method,
which is based on probabilistic relations between a
known occurrence event and input layers. For actual
field exploration of this large area, the high ranked
zone in CF values can be considered as likely new
target zones for mineral exploration.

Multi-buffer zone analysis result
Fig. 5 represents buffered zones with intervals of

300 m from mine 1 to mine 7. Mine 1, 3, 4, 6 and
7 are Fe rich ore deposits and another mines are
Pb- and Zn-rich ore deposits, respectively. Through
consideration of the proximity of the mines, the
interval of the buffered zone was selected. The
whole buffered zone of each layer was obtained
radially to 2400 m from the point source location.
To carry out multi-buffer zone analysis, each clump
in the buffered zone with an interval of 300 m
from known ore deposits was represented in plot-
style. In this context, the clump stands for the most
dominant class value and is regarded as the repre-
sentative value for a buffered zone. In following
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Fig. 6. Multi-buffer zone analysis results with respect to mine 1, mine 3 and mine 7. (a) result of airbore geophysical data sets
for mine 1, (b) result of geochemical data sets for mine 1, (c) result of airborne geophysical data sets for mine 3, (d) result of
geochemical data sets for mine 3, (e) result of airborne geophysical data sets for mine 7, (f) result of geochemical data sets for

mine 7.

results, range of each class can be referred from
Table 1.

In the case of mine 1 (class 4 in geology, Fig. 6
(@), (b)),

appeared to be the same class as in airborne data

spatial trends in airborne data sets
sets; class 5 of airborne magnetic anomaly. How-
ever, geochemical data sets showed relative varia-
tions; class 4 to 5 of Cd, class 3 to 5 of Cu, class
3 to 4 of Zn, except class 2 of Ag, and class 6 of

Pb. In the case of mine 3 (class 3 in geology, Fig.
6 (c), (d)), some different distributed patterns were
visible. Airborne data sets varied relatively more
than geochemical data sets; class 3 to 5 of air-
bome magnetic anomaly, class 3 to 6 of gamma ray
and class 3 to 5 of airborne uranium. It was
thought that these patterns resulted from class 3 in
geology; airborne radiometric data usually showed a

large response in coal seams or black shale.
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Table 2. Entropy measures, main classes of all input layers corresponding to selected zones over 95% by CF estimation and the

Yule coefficient and odds ratio with respect to integrated layer

Input layers Entropy measures Main class Yule coefficient Odds ratio
Gamma ray 0.0159 7 0.350 4313
. _ K 0.0557 2 0260 2903
Airborne geophysical Th 00634 5 0.303 5269
data sets ’ ’ ’
5 U 00243 6 0399 5414
Mag. 0.066 7 0.607 16.739
Ag 0.081 2 0822 105.295
cd 0.070 5 0572 13.500
Geochemical da Cu 0.151 3 0335 4036
eochemical data sets Pb 0.152 6 0618 17972
U 0.096 2 0.488 8.460
Zn 0.135 4 0551 11938
Geological map 0.145 Granite 0518 9.909

Although class 3 was the representative value, the
heterogeneity of the geology in the buffered zone
resulted in variation of airborne radiometric data.

As shown at Fig. 6 (e), (), in mine 8 (class 3 in
geology), in spite of a point source of Pb- and Zn-
rich ore deposit, the classified pattern of Zn was
invariant; however, there was a class change of 3 to
5 for Pb. Furthermore, the clumped trend on most
layers was slightly changed, class 5 to 3 for the
airborne magnetic anomaly, class 6 to 4 for the air-
borne U, and class 2 to 4 for K, except for gamma
ray and U.

Actually, this changed pattern and the circular
clumped trend extracted by these example case stud-
ies in this area may not be explained fully by tradi-
tional geological investigation. However, it is
regarded as informative supporting evidence for the
spatial integrated and newly generated layer such as
in Fig. 4, with regard to GIS's application in predic-
tion-related thematic mapping of mineral occur-
rences. traditional

interpretation in the non-GIS environment are as fol-

Some  advantages  over
lows: provision of supporting information to build a
knowledge base around targets for a geo-based
expert system ore deposit model for mineral explo-
ration and the delineation of a generalized model

for given source features.

Quantitative assessment of spatial interrela-
fionship

To analyze quantitatively the spatial integration
result, firstly a contingency table of each input layer
was constructed, and then, entropy measures were
computed to reveal the relationship between origi-
nal input layers and the resultant layer. In addition,
the Yule coefficient and odds ratio were computed
to reveal the most dominant class value within clas-
sified zones over highest rank zone (95%) of the
CF estimation layer. To calculate these statistics, the
main classes of all input layers corresponding to
selected zones over 95% by CF were masked and
then these masked zones were reproduced as a
binary map.

These results (Table 2) could be regarded as a
kind of post-processing or assessment of modeling
results of the spatial integration task with respect to
the spatially integrated layer for mineral potential
mapping.

As for entropy measures, the highest value repre-
sents the strongest association. The overall tendency
of each layer was to show the highest rank of
geochemical data sets (Pb, Cu, Zn) and geology. As
for airborne geophysical data sets, the residual mag-
netic intensity data showed higher values than radio-
metric data sets. However, the integrated result was
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relatively more affected by geochemical data sets
and the underlying geology than airborne geophysi-
cal data. It is thought that these results are influ-
enced by a major element of the ore deposit and
the host rock. Considering the mineral occurrence,
the integrated result is more highly affected by the
surface catchment data, which are directly related to
ore deposits and residual magnetic intensity, because
of the iron, a regionally important and dominant
element. Thus, in the scope of exploratory data
analysis, if there exists an anomaly in the geochem-
ical data set, then that can severely affect the inte-
gration result. Among the geochemical data sets, Ag
and U elements show a relatively smaller effect than
other elements. However, the effects of these ele-
ments are larger than those of the airbome geophys-
ical data sets. The high effect of Ag and U, which
generally show more response with respect to Pre-
cambrian metasedimentary rocks than in the sedi-
mentary rocks, can be attributed to a non-diagonal
deviation.

The fact that airborne and geochemical U data
show different responses can be explained as fol-
lows. Although both surveys measure the common
element U, airborne geophysical survey measures the
response with respect to the surface or subsurface.
On the other hand, the geochemical survey was
based on a ground collection of stream rock sam-
ples. Thus, the ground survey does not directly nor
necessarily reflect the underlying geological rock
type.

In terms of the Yule coefficient and odds ratio,
the statistical result reveals that the dominant class
of each data set correlates to a high mineral poten-
tial zone. As a result, airborme magnetic intensity,
Ag, Pb and Zn all show relatively high values. This
means that the spatial pattern for these four data
sets is strongly related to the newly integrated layer
for prediction of mineral occurrences. As for the
airborne geophysical data sets, most elements, except
potassium (K), show high class values. The mean-
ing of these values is that the granite zone and the
black shale containing coal seams from the Pyon-

gan Supergroup correspond to a high potential zone.
It is reasonable that the high class value of the
residual magnetic intensity is due to the Fe compo-
nent of the iron ore deposits. In spite of the high
response of potassium with respect to granite, there
are two cases where K shows a low value; that low
association in the granite zone might result from the
large non-diagonal deviation which probably has an
effect in computing a binary case. As for the
geochemical data sets, the highest class of Pb is
related to the integrated layer. In particular, the
extremely large value for Ag might reflect a large
effect from supplementary classes containing anoma-
lies. Therefore, it is thought that K, Ag, and U ele-
ments are needed to assess field data by exploratory
data analysis, although we shall not discuss this fur-
ther in this study. In addition, further research using
this approach would be useful to extend the GIS-
based exploratory data analysis.

In comparison with the quantitative assessment
result with respect to the integrated layer, the main
classes of input layers, which have an influence,
were not fully fitted to the spatially clumped class
(Fig. 6). The main class of Ag, Cd, U and Zn in
the geochemical data sets was fitted to the spatially
clumped class. However, other data sets were not
directly fitted because this combined result might
not be directly related to the richest element. The
reason is that areas of mineral deposit, modeled
with points in GIS, do not normally appear in a
wide spatial pattern and a spatial resolution of the
cell is not appropriate for the detailed ore deposit
model.

Discussion and Conclusions

GIS-based data integration for geoscientific appli-
cations can be realized as a spatial analytical func-
tionality. In this case study, we dealt with pre- and
post-processing as well as the interpretation of the
spatially integrated layer based on specific methodol-
ogies for data integration.

The main purpose of this case study was to
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extract quantitative information between the inte-
grated layer and input layers, as well as the min-
eral potential distribution through multi-buffer zone
anélysis and statistical analysis based on a contin-
gency table. As a result, input layers, which closely
affect the integrated layer, and the spatial pattern
were revealed. The overall assessment of this inte-
grated result can be considered as a decision-sup-
porting layer from the viewpoint of GIS with
additional quantitative evidence, not represented in
the integrated layer of Fig. 4. However, in the com-
puted statistical coefficients related to association,
those results may not perfectly reflect the relation-
ship between each class, but rather the relationship
between non-diagonal components. Notwithstanding
this problem, based on the results of this case
study, we think that this statistical/quantitative infor-
mation is helpful to outline the relationship between
input layers. In addition, there is a relationship to
the integrated layer and to each input layer and
even data quality assessment by spatial pattern,
which might be overlooked by simple visual inter-
pretation of the resultant layer.

Although multi-buffer zone analysis is not a
development of new technology, but a practical
scheme using basic GIS function of application
level, this proposed scheme can be utilized to reveal
the interrelationship of spatial pattern between multi-
ple data sources and developed as supplementary
information for interpretation. However, several
aspects still need to be addressed; the selection
problems of the representative value of each data
layer within buffered zones, the uncertainty or accu-
racy level caused by limitation of cell-based process-
ing and problems of misunderstanding resulting from
intrinsically complex interactions between data used.
Nevertheless, it is expected that this approach pro-
vides possibilities for further extended studies, par-
ticularly the handling of other types of geo-based
features. It is helpful to analyze the spatially
clumped pattern of multiple data oriented to given
sources whatever type of primitives is applied,

although only one case study related to thematic
mapping for mineral occurrences is presented.

Within a spatial data integration framework, analy-
sis of the characteristics of input data should gener-
ally precede execution of the spatial integration.
Geoscience data and its interpretation are naturally
uncertain due to finite, discrete and other limiting
characteristics. Anomalous values of data having
some physical meaning of natural phenomena and
outliers showing extremely large or small value are
often included in the data. In particular, outliers
unclassified from anomalous values can severely
affect the interpretation of a decision-supporting
layer generated by spatial data integration. As for
data representation and the subsequent interpretation
stage, finding an interrelationship among data sets
should be considered significant, particularly when
the spatial integration task is performed.

From this point of view, spatial integration with a
pre- or post-processing step of multi-buffer zone
analysis and a post-processing step of statistical
analysis in this case study can provide significant
information for assessment of the integrated layer
and detailed qualitative interpretation, regardless of
its result.

In addition, it is expected that these methodolo-
gies can be utilized effectively for exploratory analy-
sis to interpret quantitatively an appropriate
integration model, particularly when these approaches
are applied to data sets within the geoscientific and
other fields simultaneously. Conversely, in the scope
of exploratory data analysis, these approaches can
be utilized to assess multiple geoscience data sets, if
provided with sufficient geological evidence in the
actual field.

Finally, this case study covers the geoscientific
application of GIS in spatial integration perspec-
tives. However, we expect it to be applicable not
only for predictive mineral mapping, but also for
general or specific GIS schemes handling hybrid

geoscience data models.
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