• Title/Summary/Keyword: Multi-radio

Search Result 791, Processing Time 0.03 seconds

Multi-antenna diversity gain in terrestrial broadcasting receivers on vehicles: A coverage probability perspective

  • Ahn, Sungjun;Lee, Jae-young;Lim, Bo-Mi;Kwon, Hae-Chan;Hur, Namho;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.400-413
    • /
    • 2021
  • This paper theoretically and empirically explores the reliability gain that can be obtained by installing multiple antennas in on-vehicle broadcasting receivers. Analytical derivations reveal that maximal-ratio-combining-based diversity allows a multi-antenna receiver (MR) to achieve significantly better coverage probability than a single-antenna receiver (SR). In particular, the notable MR gains for low-power reception and high-throughput services are highlighted. We also discuss various aspects of mobile MRs, including geometric coverage, volume of the users served, and impact of receiver velocity. To examine the feasibility of MRs in the real world, extensive field experiments were conducted, particularly with on-air ATSC 3.0 broadcast transmissions. Relying on the celebrated erroneous second ratio criterion, MRs with two and four antennas were verified to achieve notable reliability gains over SRs in practice. Furthermore, our results also prove that layered-division multiplexing can cope better with receiver mobility than traditional time-division multiplexing when multiple services are intended in the same radio frequency channel.

Multi-wavelength view of SPT-CL J2106-5844: A massive galaxy cluster merger at z~1.13

  • Kim, HyeongHan;Di Mascolo, Luca;Mroczkowski, Tony;Perrott, Yvette;Rudnick, Lawrence;Jee, M. James;Churazov, Eugene;Collier, Jordan D.;Diego, Jose M.;Hopkins, Andrew M.;Kim, Jinhyub;Koribalski, Barbel S.;Marvil, Joshua D.;van der Burg, Remco;West, Jennifer L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2021
  • SPT-CL J2106-5844 is the most massive galaxy cluster at z>1 discovered to date. It has been known to be an isolated system with a singular, well-defined halo. However, recent studies provide lines of evidence for its merging state. We strengthen the case with the multi-wavelength observations from ALMA, ACA, ASKAP, ATCA, and Chandra. With the sensitive, high resolution ALMA+ACA observations, we reconstruct the ICM pressure map from the thermal SZ effect. It reveals two main gas components that are associated with the mass clumps inferred from the weak-lensing analysis. Furthermore, the X-ray hardness map supports the bimodal gas distribution. With these multi-wavelength data, we probe the merger phase in SPT-CL J2106-5844.

  • PDF

Performance of Radio Communication DS/CDMA System with Diversity Technique and BCH Coding under Impulsive Noise and Nakagami Fading (임펄스 잡음과 나카가미 페이딩이 존재할 때 다이버시티 기법과 오류정정 부호를 이용한 무선통신 DS/CDMA 시스템의 오율 특성)

  • 김지웅;강희조;이권현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.539-549
    • /
    • 1999
  • In this paper, the bit error rare (BER) performance of DS/CDMA DQPSK communication system in the presence of multi access interference, impulsive noise and Nakagami fading is investigated. The DS/CDMA DQPSK communication system adopts Maximum Ratio Combining (MRC) diversity reception and error correcting BCH code technique to enhance system performance. Using the derived error probability equation, the error rate performance of DS/CDMA DQPSK communication system has been evaluated and shown in figures to discuss as a function of impulsive index(A), Gaussian noise to impulsive noise power ratio($\Gamma$'), multi access interference(Κ), Nakagami fading parameter(m), the number of diversity branch (L), the number of error correction symbol (t), PN code sequence length(N) and $E_b/N_0$. The error performance of DS/CDMA-MDPSK signals improve by adopting MRC diversity and BCH(15,7) coding technique in the environment of impulsive noise plus Nagakami fading. From the results, we known that proposed system is affected by multi access interference, impulsive noise and Nakagami fading in radio communication system environment. Also, BER performance of DS/CDMA DQPSK communication system cam be improved increasing either the power of desired signal or the value of Gaussian noise to impulsive noise power ratio. And BCH(15,7) code technique is more effective to restrain the affection of multi access, interference, impulsive noise and Nakagami fading in DS/CDMA DQPSK communication system than MRC diversity reception technique.

  • PDF

An Effective Mitigation Method on the EMI Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 복사 방출 영향의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.376-383
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each subsystem, this partition will cause unwanted effects. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is used for the way of maintaining radiated emission, still specific user's guide doesn't give sufficient principle. In a view point of EMI, design principle of multi-CB using method will be analyzed by measurement. And design principle of noise mitigation will be provided. Generally interval of multi-CB is ${\lambda}/20$ ferrite bead. In this study, When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of EMI.

Design for Isolation Improvement between 2-Channel WiBro-MIMO and PCS Band Antenna (2-CH WiBro Band MIMO 안테나와 PCS 안테나 간의 격리도 향상을 위한 설계)

  • Kim, Min-Seong;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2008
  • This paper presents to improve of isolation characteristics between personal communication service(PCS) antenna In mobile terminal and 2-channel multi input multi output(MIMO) antenna in the wireless broadband Internet(WiBro) band. In order to improve the isolation between each channel antenna, the proposed PCS antenna with an air space of 3 mm height is located on the projected ground plane($25{\times}12mm$) which is very small space$(0.19{\lambda})$ between the 2-channel WiBro-MIMO antenna. The proposed PCS antenna structure is a modified planar inverted F antenna (PIFA) of spiral type with shorting strip line(6${\times}$4 mm). The calculated Isolation values between the proposed PIFA with 3-dimensional structure and the MIMO antenna at Wibro band are about -20dB below and agree well with the measurement. Measured return loss, bandwidth, and gain o# the proposed antenna are -20dB at 1.8GHz, 110MHz(1.76${\sim}$1.87 GHz) band at -10dB below, and 0.05dBi, respectively, Moreover, we confirm that the proposed PCS antenna has no influence on performance and characteristics of the conversional 2-channel WiBro-MIMO antenna.

The Method of Multi-screen Service using Scene Composition Technology based on HTML5 (HTML5 기반 장면구성 기술을 통한 멀티스크린 서비스 제공 방법)

  • Jo, Minwoo;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.895-910
    • /
    • 2013
  • Multi-screen service is a service that consumes more than one media in a number of terminals simultaneously or discriminately. This multi-screen service has become useful due to distribute of smart TV and terminals. Also, in case of hybrid broadcasting environment that is convergence of broadcasting and communication environment, it is able to provide various user experience through contents consumed by multiple screens. In hybrid broadcasting environment, scene composition technology can be used as an element technology for multi-screen service. Using scene composition technology, multiple media can be consumed complexly through the specified presentation time and space. Thus, multi-screen service based on the scene composition technology can provide spatial and temporal control and consumption of multiple media by linkage between the terminals. However, existing scene composition technologies are not able to use easily in hybrid broadcasting because of applicable environmental constraints, the difficulty in applying the various terminal and complexity. For this problems, HTML5 can be considered. HTML5 is expected to be applied in various smart terminals commonly, and provides consumption of diverse media. So, in this paper, it proposes the scene composition and multi-screen service technology based on HTML5 that is expected be used in various smart terminals providing hybrid broadcasting environment. For this, it includes the introduction in terms of HTML5 and multi-screen service, the method of providing information related with scene composition and multi-screen service through the extention of elements and attributes in HTML5, media signaling between terminals and the method of synchronization. In addition, the proposed scene composition and multi-screen service technology based on HTML5 was verified through the implementation and experiment.

Multi-Channel/Radio based CAC Mechanism for Wireless Ad-hoc Networks (무선 애드혹 통신망용 멀티 채널/라디오 기반 호접속 제어 메저니즘)

  • Ko, Sung-Won;Kang, Min-Su;Kim, Young-Han
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.396-404
    • /
    • 2007
  • In this paper, an Ad-hoc Routing Protocol which works in wireless Ad-hoc communication networks with multiple radios and multiple channels, and controls call admission based on bandwidth measurement is proposed. Unlike the conventional Ad-hoc node with a single radio using a single channel, an Ad-hoc node of the protocol proposed, MCQosR(Multiple Channel Quality of Service Routing), has multiple radios and uses multiple channels, which makes full duplex transmission between wireless Ad-hoc nodes, and reduces the intra interference on a route. Also, a fixed channel only for reception at each node enables the measurement of the available bandwidth, which is used to control the call admission for QoS provision. The performance of MCQosR is verified by simulation.

Design of Single/Multiband Impulse Generator Using SRD for UWB(Ultra Wideband) Technique (SRD를 이용한 UWB 기술용 단일/멀티밴드 Impulse Generator의 설계)

  • Kim, Ki Nam;Kim, Ihn Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, an impulse generator for UWB(Ultra Wide-band) technique with great possibility to be adopted as a next generation indoor WLAN(Wireless Local Area Network) has been designed by using SRD(Step Recovery Diode). Design goal is to design an impulse generator with simple structure, low cost, small size, and high performance. The impulse generator satisfied by FCC's regulation ( frequency range: 3.1~10.6 GHz, limit of power level: -41.25 dBm ) has been simulated by using ADS(Advanced Design System) which is the trade name of the Agilent Technologies. The output power of the impulse generator has been explained separately for single and multi band purposes, respectively.

  • PDF

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.