• Title/Summary/Keyword: Multi-radio

Search Result 791, Processing Time 0.025 seconds

A Joint Allocation and Path Selection Scheme for Downlink Transmission in LTE-Advanced Relay System with Cooperative Relays (협력 통신을 이용한 LTE-Advanced 릴레이 시스템을 위한 하향링크 통합 자원할당 및 경로선택 기법)

  • Lee, Hyuk Joon;Um, Tae Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.211-223
    • /
    • 2018
  • Mobile relay systems have been adopted by $4^{th}$ generation mobile systems as an alternative method to extend cell coverage as well as to enhance the system throughput at cell-edges. In order to achieve such performance gains, the mobile relay systems require path selection and resource allocation schemes that are specifically designed for these systems which make use of additional radio resources not needed in single-hop systems. This paper proposes an integrated path selection and resource allocation scheme for LTE-Advanced relay systems using collaborative communication. We first define the problem of maximizing the downlink throughput of LTE-Advanced relay systems using collaborative communication and transform it into a multi-dimensional multi-choice backpacking problem. The proposed Lagrange multiplier-based heuristic algorithm is then applied to derive the approximate solution to the maximization problem. It is shown through simulations that the approximate solution obtained by the proposed scheme can achieve a near-optimal performance.

Design of SDR-based Multi-Constellation Multi-Frequency GNSS Signal Acquisition/Tracking Module

  • Yoo, Won Jae;Kim, Lawoo;Lee, Yu Dam;Lee, Taek Geun;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Due to the Global Navigation Satellite System (GNSS) modernization, the recently launched GNSS satellites transmit signals at various frequency bands of L1, L2 and L5. Considering the Korea Positioning System (KPS) signal and other GNSS augmentation signals in the future, there is a high probability of applying more complex communication techniques to the new GNSS signals. For the reason, GNSS receivers based on flexible Software Defined Radio (SDR) concept needs to be developed to evaluate various experimental communication techniques by accessing each signal processing module in detail. In this paper, we introduce a multi-constellation (GPS/Galileo/BeiDou) multi-band (L1/L2/L5) SDR by utilizing Ettus USRP N210. The signal reception module of the developed SDR includes down-conversion, analog-to-digital conversion, signal acquisition, and tracking. The down-conversion module is designed based on the super-heterodyne method fitted for MHz sampling. The signal acquisition module performs PRN code generation and FFT operation and the signal tracking module implements delay/phase/frequency locked loops only by software. In general, it is difficult to sample entire main lobe components of L5 band signals due to their higher chipping rate compared with L1 and L2 band signals. Experiment result shows that it is possible to acquire and track the under-sampled signals by the developed SDR.

Collision Tree Based Anti-collision Algorithm in RFID System (RFID시스템에서 충돌 트리 기반 충돌방지 알고리즘)

  • Seo, Hyun-Gon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.316-327
    • /
    • 2007
  • RFID (Radio Frequency Identification) is one of the most promising air interface technologies in the future for object identification using radio wave. If there are multiple tags within the range of the RFID tag reader, all tags send their tag identifications to the reader at the same time in response to the reader's query. This causes collisions on the reader and no tag is identified. A multi-tag identification problem is a core issue in the RFID. It can be solved by anti-collision algorithm such as slot based ALHOA algorithms and tree based algorithms. This paper, proposes a collision tree based anti-collision algorithm using collision tree in RFID system. It is a memory-less algorithm and is an efficient RFID anti-collision mechanism. The collision tree is a mechanism that can solve multi-tag identification problem. It is created in the process of querying and responding between the reader and tags. If the reader broadcasts K bits of prefix to multiple tags, all tags with the identifications matching the prefix transmit the reader the identifications consisted of k+1 bit to last. According to the simulation result, a proposed collision tree based anti-collision algorithm shows a better performance compared to tree working algorithm and query tree algorithm.

Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System (다채널 동시측정을 적용한 호모다인 주파수영역 확산 광 이미징 시스템의 구현)

  • Jun, Young Sik;Baek, Woon Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • In this paper, we developed a frequency-domain diffuse optical imaging (DOI) system for imaging non-invasively using near-infrared (NIR) light sources and detectors. 70-MHz modulation and a homodyne scheme were adopted. By calibration of the coupling coefficients, concurrent detection measurements by 4 detector sets were optimized. We presented experimental reconstruction images of absorption and scattering coefficients in a liquid phantom, located an anomaly in the phantom and determined its optical properties. The images by the multi-channel concurrent detection were improved over the results by single-channel sequential detection. Tomographic slices of absorption and scattering coefficients in the phantom with an anomaly were also presented.

A Low-Energy Ultra-Wideband Internet-of-Things Radio System for Multi-Standard Smart-Home Energy Management

  • Khajenasiri, Iman;Zhu, Peng;Verhelst, Marian;Gielen, Georges
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.354-365
    • /
    • 2015
  • This work presents an Internet of Things (IoT) system for home energy management based on a custom-designed Impulse Radio Ultra-Wideband (IR-UWB) transceiver that targets a generic and multi-standard control system. This control system enables the interoperability of heterogeneous devices: it integrates various sensor nodes based on ZigBee, EnOcean and UWB in the same middleware by utilizing an ad-hoc layer as an interface between the hardware and software. The paper presents as a first the design of the IR-UWB transceiver for a portable sensor node integrated with the middleware layer, and also describes the receiver connected to the control system. The custom-designed low-power transmitter on the sensor node is fabricated with 130 nm CMOS technology. It generates a signal with a 1.1 ns pulse width while consuming $39{\mu}W$ at 1 Mbps. The UWB sensor node with a temperature measurement capability consumes 5.31 mW, which is lower than the power level of state-of-the-art solutions for smart-home applications. The UWB hardware and software layers necessary to interface with the control system are verified in over-the-air measurements in an actual office environment. With the implementation of the presented sensor node and its integration in the energy management system, we demonstrate achievement of the broad flexibility demanded for IoT.

ECMA-392 Cooperative MAC Protocol for QoS Guarantee in Multi-Hop Wireless Bridge in Ship Area (선박 내 멀티 홉 무선 브릿지에서 QoS 보장을 위한 ECMA-392 협력 MAC 프로토콜)

  • Lee, Seung Beom;Jeong, Hwan-Jong;Jeong, Min-A;Lee, Yeonwoo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1289-1297
    • /
    • 2014
  • In this paper, we use the ECMA-392 standard, the first cognitive radio networks to meet the demand for IT services in the ship. We propose a ECMA-392 cooperative MAC protocol to ensure QoS to support multimedia services in the ship area in a multi-hop wireless bridge using ECMA-392 networks. Because the proposed protocol transmits directly or relay transmission by selecting efficient routes based on the information of the ECMA-392 devices, it provides communication to ensure QoS of the device. The simulation results show that the proposed cooperative MAC protocol improves a throughput of devices compared to the existing method.

Performance Comparison of UWB DS-CDMA/OFDM/MC-CDMA System in S-V Channel Environment (S-V채널 환경에서 UWB DS-CDMA/OFDM/MC-CDMA 시스템 성능 비교)

  • Lee Hyung-Ki;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.53-60
    • /
    • 2005
  • In this paper, we analyze the performance of UWB MC-CDMA system and compareit with DS-CDMA and OFDM systems, which have been drafting in standardization even now. Too many Rake Fingers are needed in the DS-CDMA system to separate multi-path signals, which results in highsystem complexity. OFDM radio power fails to qualify for FCC certification unless frequency hopping. From this reason, MC-CDMA system considered is proposed in this paper. It has lower complexity compared with DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. Simulation result show that the DS-CDMA system has better performance with single user, but MC-CDMA system shows best performance in case of multi user environment.

MONITORING OF GAMMA-RAY BRIGHT AGN: THE MULTI-FREQUENCY POLARIZATION OF THE FLARING BLAZAR 3C 279

  • KANG, SINCHEOL;LEE, SANG-SUNG;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.257-265
    • /
    • 2015
  • We present results of long-term multi-wavelength polarization observations of the powerful blazar 3C 279 after its γ-ray flare on 2013 December 20. We followed up this flare with single-dish polarization observations using two 21-m telescopes of the Korean VLBI Network. Observations carried out weekly from 2013 December 25 to 2015 January 11, at 22 GHz, 43 GHz, 86 GHz simultaneously, as part of the Monitoring Of GAmma-ray Bright AGN (MOGABA) program. We measured 3C 279 total flux densities of 22–34 Jy at 22 GHz, 15–28 Jy (43 GHz), and 10–21 Jy (86 GHz), showing mild variability of ≤ 50 % over the period of our observations. The spectral index between 22 GHz and 86 GHz ranged from −0.13 to −0.36. Linear polarization angles were 27°–38°, 30°–42°, and 33°–50° at 22 GHz, 43 GHz, and 86 GHz, respectively. The degree of linear polarization was in the range of 6–12 %, and slightly decreased with time at all frequencies. We investigated Faraday rotation and depolarization of the polarized emission at 22–86 GHz, and found Faraday rotation measures (RM) of −300 to −1200 rad m−2 between 22 GHz and 43 GHz, and −800 to −5100 rad m−2 between 43 GHz and 86 GHz. The RM values follow a power law with a mean power law index a of 2.2, implying that the polarized emission at these frequencies travels through a Faraday screen in or near the jet. We conclude that the regions emitting polarized radio emission may be different from the region responsible for the 2013 December γ-ray flare and are maintained by the dominant magnetic field perpendicular to the direction of the radio jet at milliarcsecond scales.

Compensation of Timing Offset and Frequency Offset in the Multi-Band Receiver with Sub-Sampling Method (Sub-Sampling 방식의 다중 대역 수신기에서 타이밍 오프셋과 주파수 오프셋 보상)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.501-509
    • /
    • 2011
  • Software defined radio(SDR) has a goal that places the analog-to-digital converter(ADC) as near the antenna as possible. But current technique actually can't do analog-to-digital converting about RF band signals. So one method is studying that samples RF band signals to IF band. One of the ways Sub-Sampling technique can convert signals from RF band to IF band without oscillator. If Sub-Sampling technique is used, over 2 bands can convert signals from RF band to IF band. But due to the filter performance in RF band, it is possible to generate interference between signals that is converted in low frequency band. The effect degrades performance. In this paper, we propose one method that uses time division multiplexing(TDM) method as a solution to avoid interference between signals. By doing TDM and Sub-Sampling at the same time that method can get signals without large changes of structures.

A RFI Cancellation Technique for DMT-based VDSL Systems (DMT 기반의 VDSL 시스템을 위한 RFI 감쇄기법)

  • 정만영;조용수;백종호;유영환;송형규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.156-166
    • /
    • 2000
  • In discrete multi-tone (DMT)-based very high bit-rate digital subscriber line (VDSL) systems, the ingressed RFI (Radio Frequency Interference) accompanied by transmitted signal at the receiver is known to cause the spectralleakage by the finite-point FFT, resulting in significant performance degradation.0 this paper, we propose a RFIcancellation technique which can compensate the ingressed RFI efficiently, especially for a high data-rate VDSLsystem. The proposed technique compensates the performance degradation of e VDSL system due to RFI byusing a time-domain RFI canceller whose coefficients are obtained from the estimated center frequency of RFI inthe frequency domain under the assumption that the ingressed RFI is a narrow-band signal compared to VDSLsampling frequency. The proposed technique requires no training symbol and convergence period, and worksproperly even when spectral shape of the ingressed RFI is unknown or arbitrary. Feasibility of the proposedtechnique is demonstrated via a computer simulation by comparing its performance with the performance of theprevious RFI cancellation technique.

  • PDF