• Title/Summary/Keyword: Multi-point boundary value problem

Search Result 16, Processing Time 0.021 seconds

STUDIES ON BOUNDARY VALUE PROBLEMS FOR BILATERAL DIFFERENCE SYSTEMS WITH ONE-DIMENSIONAL LAPLACIANS

  • YANG, XIAOHUI;LIU, YUJI
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.665-732
    • /
    • 2015
  • Existence results for multiple positive solutions of two classes of boundary value problems for bilateral difference systems are established by using a fixed point theorem under convenient assumptions. It is the purpose of this paper to show that the approach to get positive solutions of boundary value problems of finite difference equations by using multi-fixed-point theorems can be extended to treat the bilateral difference systems with one-dimensional Laplacians. As an application, the sufficient conditions are established for finding multiple positive homoclinic solutions of a bilateral difference system. The methods used in this paper may be useful for numerical simulation. An example is presented to illustrate the main theorems. Further studies are proposed at the end of the paper.

EXISTENCE OF TRIPLE POSITIVE SOLUTIONS OF A KIND OF SECOND-ORDER FOUR-POINT BVP

  • Zhao, Junfang;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.183-194
    • /
    • 2009
  • In this paper, we considered the following four-point boundary value problem $\{{x"(t)+h(t)f(t,x(t),x'(t))=0,\;0<t<1\atop%20x'(0)=ax(\xi),\;x'(1)=bx(\eta)}\$. where $0\;<\;{\xi}\;<\;{\eta}\;<\;1,\;{\delta}\;=\;ab{\xi}\;-\;ab{\eta}\;+\;a\;-\;b\;<\;0,\;0\;<\;a\;<\;\frac{1}{\xi},\;0\;<\;b\;<\;\frac{1}{\eta}$. After the discussion of the Green function of the corresponding homogeneous system, we establish some criteria for the existence of positive solutions by using the generalized Leggett-William's fixed point theorem. The interesting point is the expression of the Green function, which is a difficulty for multi-point BVP.

  • PDF

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

Optimal Guidance of Guided Projectile for Range Maximization with Boundary Condition on Fin Deployment Timing (조종날개 전개시점 경계조건을 포함한 지능화 탄약의 사거리 최대화 유도 기법)

  • Kim, Yongjae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • In order for a gun-launched guided projectile to glide to the maximum range, when to deploy the fin and start flight with guidance and control should be considered in range optimization process. This study suggests a solution to the optimal guidance problem for flight range maximization of the flight model of a guided projectile in vertical plane considering the aerodynamic properties. After converting the nonlinear Multi-Phase Optimal Control Problem to Two-Point Boundary Value Problem, the optimized guidance command and the best fin deployment timing are calculated by the proposed numerical method. The optimization results of the multiple flight rounds with various initial velocity and launch angle indicate that determining specific launch condition incorporated with the guidance scheme is of importance in terms of mechanical energy consumption.

EXISTENCE OF POSITIVE SOLUTIONS FOR BVPS TO INFINITE DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yuji
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.639-663
    • /
    • 2011
  • Motivated by Agarwal and O'Regan ( Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl. 33(1997)85-99), this article deals with the discrete type BVP of the infinite difference equations. The sufficient conditions to guarantee the existence of at least three positive solutions are established. An example is presented to illustrate the main results. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multi-fixed-point theorems can be extended to treat BVPs for infinite difference equations. The strong Caratheodory (S-Caratheodory) function is defined in this paper.

SYMMETRIC SOLUTIONS FOR A FOURTH-ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL $p$-LAPLACIAN AT RESONANCE

  • Yang, Aijun;Wang, Helin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.161-171
    • /
    • 2012
  • We consider the fourth-order differential equation with one-dimensional $p$-Laplacian (${\phi}_p(x^{\prime\prime}(t)))^{\prime\prime}=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t)$) a.e. $t{\in}[0,1]$, subject to the boundary conditions $x^{\prime\prime}}(0)=0$, $({\phi}_p(x^{\prime\prime}(t)))^{\prime}{\mid}_{t=0}=0$, $x(0)={\sum}_{i=1}^n{\mu}_ix({\xi}_i)$, $x(t)=x(1-t)$, $t{\in}[0,1]$, where ${\phi}_p(s)={\mid}s{\mid}^{p-2}s$, $p$ > 1, 0 < ${\xi}_1$ < ${\xi}_2$ < ${\cdots}$ < ${\xi}_n$ < $\frac{1}{2}$, ${\mu}_i{\in}\mathbb{R}$, $i=1$, 2, ${\cdots}$, $n$, ${\sum}_{i=1}^n{\mu}_i=1$ and $f:[0,1]{\times}\mathbb{R}^3{\rightarrow}\mathbb{R}$ is a $L^1$-Carath$\acute{e}$odory function with $f(t,u,v,w)=f(1-t,u,-v,w)$ for $(t,u,v,w){\in}[0,1]{\times}\mathbb{R}^3$. We obtain the existence of at least one nonconstant symmetric solution by applying an extension of Mawhin's continuation theorem due to Ge. Furthermore, an example is given to illustrate the results.