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EXISTENCE OF POSITIVE SOLUTIONS FOR BVPS TO
INFINITE DIFFERENCE EQUATIONS WITH

ONE-DIMENSIONAL p-LAPLACIAN

Yuji Liu*

Abstract. Motivated by Agarwal and O’Regan ( Boundary value
problems for general discrete systems on infinite intervals, Comput.
Math. Appl. 33(1997)85-99), this article deals with the discrete
type BVP of the infinite difference equations. The sufficient condi-
tions to guarantee the existence of at least three positive solutions
are established. An example is presented to illustrate the main re-
sults. It is the purpose of this paper to show that the approach to
get positive solutions of BVPs by using multi-fixed-point theorems
can be extended to treat BVPs for infinite difference equations. The
strong Caratheodory (S-Caratheodory) function is defined in this
paper.

1. Introduction

Let N0 = {0, 1, 2, 3, · · · } and N = {1, 2, 3, · · · }. Denote
∑b

i=a x(i)
= x(a)+x(a+1)+ · · ·+x(b) for a, b ∈ N0 with a ≤ b and

∑b
i=a x(i) = 0

if a, b ∈ N0 and b < a. In recent years, there have been many papers
discussed with the solvability of boundary value problems for finite differ-
ence equations, see [1-21], we know except [22] no other paper concerns
with the boundary value problems for infinite difference equations.

The purpose of this paper is to investigate the following boundary
value problem (BVP for short) for the second order p-Laplacian infinite
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difference equation

(1.1)





∆[φ(∆x(n))] + f(n, x(n), ∆x(n)) = 0, n ∈ N0,
x(0)−∑∞

n=1 αnx(n) = 0,
limn→∞∆y(n)−∑∞

n=1 βn∆y(n) = 0, ,

where αn, βn ≥ 0 for all n ∈ N with
∑

n∈N

αn < 1,
∑

N∈N

nαn < ∞,
∑

n∈N

βn < 1,

f : N0×[0,∞)2 → [0,∞) is a S-Caratheodory function (strong Caratheodory
function), i.e., for each n ∈ N0 f(n, ·, ·) is continuous, and for each r > 0
there exists a nonnegative sequence {ψr(n)} with

∑

n∈N0

ψr(n) < ∞,
∞∑

n=0

∞∑

j=n

φr(j) < +∞

such that

|f(n, (1 + n)x, y)| ≤ ψr(n) for all n ∈ N0, |x|, |y| ≤ r,

f(n, 0, 0) 6≡ 0 for all n ∈ N0, φ is called p−Laplacian, φ(x) = |x|p−2x
with p > 1, its inverse function is denoted by φ−1(x) with φ−1(x) =
|x|q−2x with 1/p + 1/q = 1.

We establish sufficient conditions for the existence of at least three
positive solutions of BVP(1).

The remainder of this paper is organized as follows: to get the main
results, in Section 2, we first give seven lemmas and then construct an
operator in cones in a suitable Banach space, then the proof of Theorem
L is presented at the end of this section. An example is given in Section
3 to illustrate the main results.

2. Main results

Choose
X = {{x(n)} : x(n) ∈ R, n ∈ N0

there exist the limits lim
n→∞

x(n)
n + 1

, lim
n→∞∆x(n)}.

Define the norm

||x|| = max
{

sup
n∈N0

|x(n)|
1 + n

, sup
n∈N0

|∆x(n)|
}

.

It is easy to see that X is a real Banach space.
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Let k1, k2 ∈ N with k1 < k2. Choose

(2.1) P =





x ∈ X :

x(n) ≥ 0 for all n ∈ N0,
∆x(n) ≥ 0 for all n ∈ N0,

minn∈[k1,k2]
x(n)
1+n ≥ 1

2(1+k2) supn∈N0

x(n)
1+n ,

x(0)−∑∞
n=1 αix(n) = 0,

limn→∞∆x(n)−∑∞
n=1 βn∆x(n) = 0





,

Suppose λ > 0 and µ = λ
∑

n∈N αn. Set

x0(n) =
{

µ, n = 0,
λ, n ∈ N.

It is easy to see that x0 ∈ P . Then P is a nontrivial cone in X.
Let h(n)(n ∈ N0) be a nonnegative sequence with

∑
n∈N0

h(n) con-
verging, consider the following BVP

(2.2)





∆[φ(∆y(n))] + h(n) = 0, n ∈ N0,
y(0)−∑∞

n=1 αiy(n) = 0,
limn→∞∆y(n)−∑∞

n=1 βi∆y(n) = 0,

Lemma 2.1. If y is a solution of BVP(2.2), then y(n) ≥ 0 and
∆y(n) ≥ 0 for all n ∈ N0, ∆y(n) is decreasing.

Proof. Since ∆[φ(∆y(n))] = −h(n) ≤ 0 for all n ∈ N0, we get that
φ(∆y(n)) is decreasing. Then ∆y(n) is decreasing. It follows from the
boundary conditions that

lim
n→∞∆y(n) =

∞∑

n=1

βi∆y(n) ≥
∞∑

n=1

βi lim
n→∞∆y(n).

Then (
1−

∞∑

n=1

βi

)
lim

n→∞∆y(n) ≥ 0.

Since
∑∞

n=1 βi < 1,, we get limn→∞∆y(n) ≥ 0. Together with the
decreasing property of ∆y(n), we get ∆y(n) ≥ 0 for all n ∈ N0. Thus

y(0) =
∞∑

n=1

αiy(n) ≥
∞∑

n=1

αiy(0).

Since
∑∞

n=1 αi < 1, we get y(0) ≥ 0. Together with the increasing
property of y(n), we get y(n) ≥ 0 for all n ∈ N0. The proof is complete.



642 Yuji Liu

Lemma 2.2. Suppose y is a solution of BVP(2.2). Then

(2.3) y(n) = Bh +
n−1∑

k=0

φ−1

(
φ(Ah) +

∞∑

s=k

h(s)

)
, n ∈ N0,

where Ah satisfies

(2.4) Ah =
∞∑

n=1

βnφ−1

(
φ(Ah) +

∞∑
s=n

h(s)

)
,

and

(2.5) Bh =
1

1−∑∞
n=1 αn

∞∑

n=0

αn

n−1∑

k=0

φ−1

(
φ(Ah) +

∞∑

s=k

h(s)

)
.

Further more, we have

(2.6) Ah ∈
[
0, φ−1

( ∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

n=0

h(n)

)]
.

Proof. Since
∑∞

n=0 h(n) converges, we get from (3) that

φ(∆y(∞))− φ(∆y(n)) = −
∞∑

s=n

h(s).

So

∆y(n) = φ−1

(
φ(∆y(∞)) +

∞∑
s=n

h(s)

)
.

It follows that

y(n) = y(0) +
n−1∑

k=0

φ−1

(
φ(∆y(∞)) +

∞∑

s=k

h(s)

)
, n ∈ N0.

It follows from the boundary conditions that

y(0) = y(0)
∞∑

n=1

αn +
∞∑

n=1

αn

n−1∑

k=0

φ−1

(
φ(∆y(∞)) +

∞∑

s=k

h(s)

)

and

∆y(∞) =
∞∑

n=1

βnφ−1

(
φ(∆y(∞)) +

∞∑
s=n

h(s)

)
.
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Let ∆y(∞) = Ah and Bh = y(0). Then we get (2.3), (2.4), and (2.5).
Now, from Lemma 2.1, we see ∆y(∞) = Ah ≥ 0. On the other hand,
let

G(c) = 1−
∞∑

n=1

βnφ−1

(
1 +

∑∞
s=n h(s)
φ(c)

)
.

It is easy to see that G(c) is continuous on (0,∞) and is strictly increas-
ing on (0,∞). Since

lim
c→0+

G(c) = −∞,

and

G

(
φ−1

( ∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

n=0

h(n)

))

= 1−
∞∑

n=1

βnφ−1

(
1 +

1−∑∞
n=1 βn∑∞

n=1 βn

∑∞
s=n h(s)∑∞
n=0 h(n)

)
≥ 0.

It follows that

∆y(∞) = Ah ∈
[
0, φ−1

( ∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

n=0

h(n)

)]
.

The proof is complete.

Lemma 2.3. If y is a solution of BVP(2.2), then

(2.7) min
n∈[k1,k2]

y(n)
1 + n

≥ 1
2(1 + k2)

sup
n∈N0

y(n)
1 + n

.

Proof. It follow from Lemma 2.1 that y(n) ≥ 0 and ∆y(n) ≥ 0 for
n ∈ N0, ∆y(n) is decreasing. Since there exists the limit limn→∞∆y(n),
we can prove that there exists the limit limn→∞

y(n)
1+n . In fact, suppose

that limn→∞∆y(n) = c. If c = 0, then for any ε > 0 there exists H > 0
such that

|∆y(n)| < ε

2
, n ≥ H.

It follows that

|y(n)| ≤ |y(H)|+
n−1∑

s=H

|∆y(s)| ≤ |y(H)|+ ε

2
(n−H), n ≥ H.

Then
|y(n)|
1 + n

≤ |y(H)|
1 + n

+
n−H

1 + n

ε

2
<
|y(H)|
1 + n

+
ε

2
, n ≥ H.
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Choose H ′ > H large enough so that

|y(n)|
1 + n

≤ |y(H)|
1 + n

+
ε

2
< ε, n ≥ H ′,

which implies that

lim
n→∞

y(n)
1 + n

= 0.

If c 6= 0, then limt→∞
(

∆y(n)− c
)

= 0. It follows that

lim
t→∞∆

[
y(n)− cn

]
= 0.

Then we get similarly that

lim
t→∞

y(n)− cn

1 + n
= 0.

It follows that limn→∞
y(n)
1+n = c. It follows that there exists the number

sup
n∈N0

y(n)
1 + n

.

To complete the proof, we consider two cases:
Case 1. there is n0 ∈ N0 such that supn∈N0

y(n)
1+n = y(n0)

1+n0
.

For n1, n, n2 ∈ N0 with n1 < n < n2, we have

(n− n1)
y(n2)− y(n)

n2 − n
+ y(n1)− y(n)

=
(n− n1)(y(n2)− y(n)) + (n2 − n)(y(n1)− y(n))

n2 − n

=
(n− n1)

∑n2−1
s=n ∆y(s)− (n2 − n)

∑n−1
s=n1

∆y(s)
n2 − n

=
−(n2 − n)

∑n−1
s=n1

∆y(s) + (n− n1)
∑n2−1

s=n ∆y(s)
n2 − n

.

Since ∆y(n) is decreasing, we get ∆y(s) ≤ ∆y(k) for all s ≥ k. Then
we get

(n2 − n)
n−1∑
s=n1

∆y(s) ≥ (n− n1)
n2−1∑
s=n

∆y(s).

So

(n− n1)
y(n2)− y(n)

n2 − n
+ y(n1)− y(n) ≤ 0.
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It follows that

(2.8) y(n) ≥ n2 − n

n2 − n1
y(n1) +

n− n1

n2 − n1
y(n2).

If n0 = k1, we get

min
n∈[k1,k2]

y(n)
1 + n

≥ y(k1)
1 + k2

=
y(n0)
1 + n0

1 + k1

1 + k2
≥ 1

2(1 + k2)
sup
n∈N0

y(n)
1 + n

.

If n0 > k1, by using (2.8) we have

y(k1) = y

(
n0 − k1

n0 − (k1 − 1)
(k1 − 1) +

k1 − (k1 − 1)
n0 − (k1 − 1)

n0

)

≥ n0 − k1

n0 − (k1 − 1)
y(k1 − 1) +

k1 − (k1 − 1)
n0 − (k1 − 1)

y(n0)

≥ 1 + n0

n0 − (k1 − 1)
y(n0)
1 + n0

.

Then

min
n∈[k1,k2]

y(n)
1 + n

≥ y(k1)
1 + k2

≥ 1
1 + k2

1 + n0

n0 − (k1 − 1)
y(n0)
1 + n0

≥ 1
2(1 + k2)

sup
n∈N0

y(n)
1 + n

.

If n0 < k1, we have

min
n∈[k1,k2]

yn)
1 + n

≥ y(k1)
1 + k2

=
1

1 + k2
y

(
(2k1 + 1− n0)− k1

(2k1 + 1− n0)− n0
n0

+
k1 − n0

(2k1 + 1− n0)− n0
(2k1 + 1− n0)

)

≥ 1
1 + k2

[
(2k1 + 1− n0)− k1

(2k1 + 1− n0)− n0
y(n0)

+
k1 − n0

(2k1 + 1− n0)− n0
y(2k1 + 1− n0)

]
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≥ 1
1 + k2

(k1 + 1− n0)(1 + n0)
2k1 + 1− 2n0

y(n0)
1 + n0

≥ 1
2(1 + k2)

sup
n∈N0

y(n)
1 + n

.

Case 2. supn∈N0

y(n)
1+n = limn→∞

y(n)
1+n .

Choose n′ > k2, similarly to Case 1 we can prove that

min
n∈[k1,k2]

y(n))
1 + n

≥ 1
2(1 + k2)

y(n′)
1 + n′

.

Let n′ →∞, one sees

min
n∈[k1,k2]

y(n))
1 + n

≥ 1
2(1 + k2)

sup
n∈N0

y(n)
1 + n

.

From Cases 1 and 2, we get (2.7). The proof is complete.

Now, we state some definitions and a very novel fixed point theorem
called five functional fixed point theorem, whose proof can be found in
[15].

Definition 2.4. [15] A map ψ : P → [0,+∞) is a nonnegative
continuous concave or convex functional map provided ψ is nonnegative,
continuous and satisfies

ψ(tx + (1− t)y) ≥ tψ(x) + (1− t)ψ(y),

or
ψ(tx + (1− t)y) ≤ tψ(x) + (1− t)ψ(y),

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.5. [15] An operator T ;X → X is completely continu-
ous if it is continuous and maps bounded sets into pre-compact sets.

Definition 2.6. [15] Let a, b, c, d, h > 0 be positive constants, α, ψ be
two nonnegative continuous concave functionals on the cone P , γ, β, θ be
three nonnegative continuous convex functionals on the cone P . Define
the convex sets as follows:

Pc = {x ∈ P : ||x|| < c},
P (γ, α; a, c) = {x ∈ P : α(x) ≥ a, γ(x) ≤ c},
P (γ, θ, α; a, b, c) = {x ∈ P : α(x) ≥ a, θ(x) ≤ b, γ(x) ≤ c},
Q(γ, β; , d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c},
Q(γ, β, ψ;h, d, c) = {x ∈ P : ψ(x) ≥ h, β(x) ≤ d, γ(x) ≤ c}.
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Lemma 2.7. [15] Let X be a real Banach space, P be a cone in X,
α, ψ be two nonnegative continuous concave functionals on the cone P ,
γ, β, θ be three nonnegative continuous convex functionals on the cone
P . There exist constant M > 0 such that

α(x) ≤ β(x), ||x|| ≤ Mγ(x) for all x ∈ P.

Furthermore, Suppose that h, d, a, b, c > 0 are constants with d < a. Let
T : Pc → Pc be a completely continuous operator. If

(C1) {y ∈ P (γ, θ, α; a, b, c)|α(x) > a} 6= ∅ and

α(Tx) > a for every x ∈ P (γ, θ, α; a, b, c);

(C2) {y ∈ Q(γ, θ, ψ; h, d, c)|β(x) < d} 6= ∅ and

β(Tx) < d for every x ∈ Q(γ, θ, ψ;h, d, c);

(C3) α(Ty) > a for y ∈ P (γ, α; a, c) with θ(Ty) > b;
(C4) β(Tx) < d for each x ∈ Q(γ, β; , d, c) with ψ(Tx) < h,
then T has at least three fixed points y1, y2 and y3 such that

β(y1) < d, α(y2) > a, β(y3) > d, α(y3) < a.

Define the functionals on P : P → R by

γ(x) = sup
n∈N0

|∆x(n)|, x ∈ P,

β(x) = sup
n∈N0

x(n)
1 + n

, x ∈ P,

θ(x) = sup
n∈N0

x(n)
1 + n

, x ∈ P,

α(x) = min
n∈[k1,k2]

x(n)
1 + n

, x ∈ P,

ψ(x) = min
n∈[k1,k2]

x(n)
1 + n

, x ∈ P.

Lemma 2.8. If y is a solution of BVP(2.2), we have ||y||| ≤ Mγ(y)
for all y ∈ P , where

(2.9) M = max
{

1,

∑∞
n=1 nαn

1−∑∞
n=1 αn

}
.

Proof. Since y is the solution of BVP(3), we get

|y(n)| = |y(n)− y(0) + y(0)| =
∣∣∣∣∣
n−1∑

i=0

∆y(i)

∣∣∣∣∣ +

∣∣∣∣∣
∑

n∈N

αny(n)

∣∣∣∣∣
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≤ n sup
n∈N0

|∆y(n)|+
∣∣∣∣
∑

n∈N αn[y(n)− y(0)]
1−∑∞

i=1 αi

∣∣∣∣

≤ n sup
n∈N0

|∆y(n)|+
∑∞

n=1 αn
∑n−1

s=0 |∆y(s)|
1−∑∞

i=1 αi

≤
(

n +
∑∞

n=1 nαn

1−∑∞
i=1 αi

)
sup
n∈N0

|∆y(n)|.

It follows that

y(n)
1 + n

≤
n +

∑∞
n=1 nαn

1−∑∞
i=1 αi

1 + n
sup
n∈N0

|∆y(n)|

≤ max
{

1,

∑∞
n=1 nαn

1−∑∞
i=1 αi

}
sup
n∈N0

|∆y(n)|.

we get that

||y|| = max
{

sup
n∈N0

|y(n)|
1 + n

, sup
n∈N0

|∆y(n)|
}

≤ max
{

1,

∑∞
n=1 nαn

1−∑∞
i=1 αi

}
sup
n∈N0

|∆y(n)|

= max
{

1,

∑∞
n=1 nαn

1−∑∞
i=1 αi

}
γ(y).

Then ||y|| ≤ Mγ(y) for all y ∈ P . The proof is complete.

For x ∈ P , define (Tx)(n) by

(Tx)(n) = Bx +
n−1∑

k=0

φ−1

(
φ(Ax) +

∞∑

s=k

f(s, x(s),∆x(s))

)
, n ∈ N0,

where Ax satisfies

(2.10) Ax =
∞∑

n=1

βnφ−1

(
φ(Ax) +

∞∑
s=n

f(s, x(s), ∆x(s))

)
,

and
(2.11)

Bx =
1

1−∑∞
n=1 αn

∞∑

n=1

αn

n−1∑

k=0

φ−1

(
φ(Ax) +

∞∑

s=k

f(s, x(s), ∆x(s))

)
.
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One sees easily that

(2.12)





∆[φ(∆(Tx)(n))] + f(n, x(n), ∆x(n)) = 0, n ∈ N0,
(Tx)(0)−∑∞

i=1 αi(Tx)(i) = 0,
limn→∞∆(Tx)(n)−∑∞

i=1 βi∆(Tx)(i) = 0.

By Lemma 2.2, we have

(2.13) Ax ∈
[
0, φ−1

( ∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

n=0

f(n, x(n), ∆x(n)

)]
.

Lemma 2.9. Let V = {x ∈ X : ||x|| < l}(l > 0). If
{

x(n)
1+n : x ∈ V

}

and {∆x(n) : x ∈ V } are both equiconvergent at infinity, where

V1 =:
{

x(n)
1 + n

: x ∈ V

} ⋃
{∆x(n) : x ∈ V }

is called equiconvergent at infinity if and only if for all ε > 0, there exists
N = N(ε) > 0 such that for all x ∈ V , it holds that∣∣∣∣

x(n1)
1 + n1

− x(n2)
1 + n2

∣∣∣∣ < ε, |∆x(n1)−∆x(n2)| < ε n1, n2 > N.

Then V is pre-compact on X.

Proof. The proof is similar to that of the proof of Lemma in [22] and
is omitted.

Lemma 2.10. It holds that
(i) Tx ∈ P for each x ∈ P ;
(ii) x is a solution of BVP(1) if and only if x is a solution of the

operator equation x = Tx;
(iii) T : P → P is completely continuous;

Proof. (i) Note the definition of P . For x ∈ P , Lemma 2.1, Lemma 2.2
and Lemma 2.3 imply that y(n) ≥ 0, ∆y(n) ≥ 0 for all n ∈ N0, ∆(Tx)(n)
is decreasing and minn∈[k1,k2]

(Tx)(n)
1+n ≥ 1

2(1+k2) supn∈N0

(Tx)(n)
1+n . Together

with (2.12), it follows that Tx ∈ P .
(ii) It is easy to see from (13) that x is a solution of BVP(1) if and

only if x is a solution of the operator equation x = Tx.
(iv) It suffices to prove that T is continuous on P and T maps bounded

subsets into pre-compact sets. We divide the proof into four steps:
Step 1. For each bounded subset D ⊂ P , prove that {(Ax, Bx) : x ∈

D} is bounded in R2, where Ax and Bx are given in (2.10) and (2.11).
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Denote

L1 = sup
{

max
n∈N0

|x(n)|
1 + n

, sup
n∈N0

|∆x(n)| : x ∈ D

}

and
BL1(j) = max

|x|,|y|≤L1

|f(j, (1 + j)x, y)|.
Since f is a S-Caratheodory function, it follows from (2.13) that

0 ≤ Ax ≤ φ




∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

j=0

BL1(j)


 < ∞,

and Bx satisfies that

0 ≤ |Bx|

=
1

1−∑∞
i=1 αi

∞∑

j=1

αj

j−1∑

i=0

φ−1

(
φ(Ax) +

∞∑

s=i

f(s, x(s), ∆x(s))

)

≤ 1
1−∑∞

i=1 αi

∞∑

j=1

jαjφ
−1

(
1

1−∑∞
n=1 βn

∞∑

s=0

f(s, x(s), ∆x(s))

)

≤ 1
1−∑∞

i=1 αi

∞∑

j=1

jαjφ
−1


 1

1−∑∞
n=0 βn

∞∑

j=0

BL1(j)




< ∞.

Hence {(Ax, Bx) : x ∈ D} is bounded in R2.
Step 2. For each bounded subset D ⊂ P , and each x0 ∈ D, prove

that T is continuous at x0.
For x0 ∈ D and xn ∈ D with xn → x0(n → +∞) in D. Denote

un(k) = (Txn)(k), u0(k) = (Tx0)(k) for all k ∈ N0. We prove that T is
continuous at x0, i.e., un → u0(n → +∞). Let Ax0 , Bx0 be defined by

(2.14) Ax0 =
∞∑

n=1

βnφ−1

(
φ(Ax0) +

∞∑
s=n

f(s, x(s), ∆x(s))

)
,

and
(2.15)

Bx0 =
1

1−∑∞
n=1 αn

∞∑

n=1

αn

n−1∑

k=0

φ−1

(
φ(Ax0) +

∞∑

s=k

f(s, x(s), ∆x(s))

)
.

First, we prove that Ax, Bx are continuous in x, i.e.,

(Axn , Bxn) → (Ax0 , Bx0), n → +∞.
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It follows from Step 1 that (Axn , Bxn) is bounded. Without loss of
generality, suppose that (Axn , Bxn) → (A, B) 6= (Ax0 , Bx0).

It is easy to see that

lim
n→+∞un(k)

= lim
n→+∞


Bxn +

k−1∑

i=0

φ−1


φ(Axn) +

∞∑

j=i

f(j, xn(j), ∆xn(j))







= B +
k−1∑

i=0

φ−1


φ(A) + lim

n→+∞

∞∑

j=i

f(j, xn(j),∆xn(j))




= B +
k−1∑

i=0

φ−1


φ(A) + lim

n→+∞

∞∑

j=i

f(j, x0(j), ∆x0(j))




= u(k).

One sees that B = u(0), A = limn→∞∆u(n) and u satisfies

u(0)−
∞∑

i=1

αiu(i) = 0, lim
n→∞∆u(n)−

∞∑

i=1

βi∆u(i) = 0.

So

A =
∞∑

n=1

βnφ−1

(
φ(A) +

∞∑
s=n

f(s, x(s), ∆x(s))

)
,

and

B =
1

1−∑∞
n=1 αn

∞∑

n=1

αn

n−1∑

k=0

φ−1

(
φ(A) +

∞∑

s=k

f(s, x(s), ∆x(s))

)
.

It follows from Lemma 2.2, (2.14) and (2.15) that A = Ax0 , then B =
Bx0 .

Hence

(Axn , Bxn) → (A, B) = (Ax0 , Bx0), n → +∞.

This together with the continuous property of f implies that T is con-
tinuous at x0.

Step 3. For each bounded subset Ω ⊂ P , prove that TΩ is bounded.
In fact, for each bounded subset Ω ⊆ D, and x ∈ Ω. Suppose

||x|| = max
{

sup
n∈N0

|x(n)|
1 + n

, max
n∈[0,N+1]

|∆x(n)|
}
≤ M1
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and Step 1 implies that there exist constants M2 > 0 such that |Ax|, |Bx|
< M2 for all x ∈ Ω. Then

|(Tx)(n)|
1 + n

=
1

1 + n

∣∣∣∣∣∣
Bx +

n−1∑

i=0

φ−1


φ(Ax) +

∞∑

j=i

f(j, x(j), ∆x(j))




∣∣∣∣∣∣

≤ M2

1 + n
+

1
1 + n

n−1∑

i=0

φ−1


φ(M2) +

∞∑

j=i

|f(j, x(j), ∆x(j))|



≤ M2 +
1

1 + n

n−1∑

i=0

φ−1


φ(M2) +

∞∑

j=0

fM1(j)




≤ M2 + φ−1


φ(M2) +

∞∑

j=0

fM1(j)




=: M3,

where fM1(j) = max|x|≤M1,|y|≤M1≤M1
|f(j, (1 + j)x, y)|. Similarly, one

has that

|∆(Tx)(n)| =

∣∣∣∣∣∣
φ−1


φ(Ax) +

∞∑

j=n

f(j, x(j), ∆x(j))




∣∣∣∣∣∣

≤ φ−1


φ(M2) +

∞∑

j=0

fM1(j)


 =: M4.

It follows that TΩ is bounded.
Step 4. For each bounded subset Ω ⊂ P , prove that TΩ is pre-

compact.
Since |Ax| ≤ M2, we get

φ(Ax) +
∞∑

n=0

f(n, x(n), ∆x(n)) ≤ φ(M4).
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Then there ξ ∈
[
φ(Ax), φ(Ax) +

∑∞
j=n f(j, x(j), ∆x(j))

]
such that

|∆(Tx)(n)−Ax| =

∣∣∣∣∣∣
φ−1


φ(Ax) +

∞∑

j=n

f(j, x(j), ∆x(j))


−Ax

∣∣∣∣∣∣

= (q − 1)ξq−2
∞∑

j=n

f(j, x(j),∆x(j))

≤ (q − 1)φ(M4)q−2
∞∑

j=n

f(j, x(j),∆x(j))

→ 0 uniformly as n →∞.

For any ε > 0, there exists N1,ε > 0 such that

(2.16) |∆(Tx)(n1)−∆(Tx)(n2)| < ε, n > N1,ε.

Now, noting that f is S-Caratheodory function, one sees that there exists

ξi ∈

φ(Ax), φ(Ax) +

∞∑

j=i

|f(j, x(j), ∆x(j))|



such that∣∣∣∣
(Tx)(n)
1 + n

−Ax

∣∣∣∣

=

∣∣∣∣∣∣
Bx

1 + n
+

∑n−1
i=0 φ−1

(
φ(Ax) +

∑∞
j=i |f(j, x(j), ∆x(j))|

)

1 + n
−Ax

∣∣∣∣∣∣

≤ |Bx|
1 + n

+
|Ax|
1 + n

+

∣∣∣∑n−1
i=0 φ−1

(
φ(Ax) +

∑∞
j=i |f(j, x(j),∆x(j))|

)
−Axn

∣∣∣
1 + n

≤ 2M2

1 + n
+

∣∣∣∑n−1
i=0

[
φ−1

(
φ(Ax) +

∑∞
j=i |f(j, x(j), ∆x(j))|

)
−Ax

]∣∣∣
1 + n

=
2M2

1 + n
+

(q − 1)
∑n−1

i=0 ξq−2
i

∑∞
j=i f(j, x(j), ∆x(j))

1 + n

≤ 2M2

1 + n
+

(q − 1)φ(M4)q−2
∑n−1

i=0

∑∞
j=i fM1(j)

1 + n
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≤ 2M2

1 + n
+

(q − 1)φ(M4)q−2
∑∞

i=0

∑∞
j=i fM1(j)

1 + n
→ 0 uniformly as n →∞.

So there exists N2,ε > 0 such that

(2.17)
∣∣∣∣
(Tx)(n1)
1 + n1

− (Tx)(n2)
1 + n2

∣∣∣∣ < ε, n > N2,ε.

Choose Nε = max {N1,ε, N2,ε}. Then

|∆(Tx)(n1)−∆(Tx)(n2)| < ε,

∣∣∣∣
(Tx)(n1)
1 + n1

− (Tx)(n2)
1 + n2

∣∣∣∣ < ε, n > Nε.

One knows that TΩ is pre-compact. Lemma 2.6 with Steps 1, 2, 3 and
4 imply that T is completely continuous.

Theorem L. Suppose that there exist positive constants e1, e2, c
such that

c ≥ 2(1 + k2)e2 > e2 > e1 > 0.

Let

Q = φ
( c

M

)(
1−

∞∑

n=1

βn

)
;

W =
1

2k1+2 − 22k1−k2−1
φ

(
(1 + k2)e2

k1

)
;

E =

(
1−

∞∑

n=1

βn

)
φ

(
e1 (1−∑∞

n=1 αn)
1−∑∞

n=1 αn +
∑∞

n=1 nαn

)
.

If Q > W and
(A1) f(n, (1 + n)u, v) ≤ Q

2n+1 for all n ∈ N0, u ∈ [0, c], v ∈ [0, c];
(A2) f(n, (1 + n)u, v) ≥ w

2n+1 for all n ∈ [k1, k2], u ∈ [e2, 2(1 +
k2)e2], v ∈ [0, c];

(A3) f(n, (1 + n)u, v) ≤ E
2n+1 for all n ∈ N0, u ∈ [0, e1], v ∈ [0, c];

then BVP(1.1) has at least three positive solutions x1, x2, x3 such
that

sup
n∈N0

x1(n)
1 + n

< e1, min
n∈[k1,k2]

x2(n)
1 + n

> e2,

and

sup
n∈N0

x3(n)
1 + n

> e1, min
n∈[k1,k2]

x3(n)
1 + n

< e2.
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Proof. To apply Lemma 2.4, we prove that all conditions in Lemma
2.4 are satisfied. By the definitions, it is easy to see that α, ψ are two
nonnegative continuous concave functionals on the cone P , γ, β, θ are
three nonnegative continuous convex functionals on the cone P .

One sees α(x) ≤ β(x) for all x ∈ P . From Lemma 2.5, we have
||x|| ≤ Mγ(x) for all x ∈ P.

Lemma 2.7 implies that x = x(n) is a solution of BVP(1) if and only
if x is a solution of the operator equation x = Tx and T : P → P is
completely continuous.

Corresponding to Lemma 2.4,

h =
e1

2(1 + k2)
, d = e1, a = e2, b = 2(1 + k2)e2, c = c.

Now, we prove that all conditions of Lemma 2.4 hold. One sees that
0 < d < a. The remainder is divided into four steps.

Step 1. Prove that T : Pc → Pc;

For x ∈ Pc, we have ||x|| ≤ c. Then 0 ≤ x(n)
1+n ≤ c and 0 ≤ ∆x(n) ≤ c

for n ∈ N0. So (A1) implies that

f(n, x(n), ∆x(n)) = f

(
n, (1 + n)

x(n)
1 + n

, ∆x(n)
)
≤ Q

2n+1
, n ∈ N0.

It follows from Lemma 2.7 that Tx ∈ P . One sees from Lemma 2.2 that

(2.18) 0 ≤ Ax ≤ φ−1




∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

j=0

f(j, x(j), ∆x(j))


 .

We have that

|∆(Tx)(n)| =

∣∣∣∣∣∣
φ−1


φ(Ax) +

∞∑

j=n

f(j, x(j), ∆x(j))




∣∣∣∣∣∣

≤ φ−1


φ(Ax) +

∞∑

j=n

f(j, x(j),∆x(j))



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≤ φ−1




∑∞
n=1 βn

1−∑∞
n=1 βn

∞∑

j=0

f(j, x(j),∆x(j))

+
∞∑

j=n

f(j, x(j), ∆x(j))




≤ φ−1


 1

1−∑∞
n=1 βn

∞∑

j=0

Q

2j+1




≤ φ−1

(
Q

1−∑∞
n=0 βn

)
≤ c.

From Lemma 2.5, we have

|(Tx)(n)
1 + n

≤ M sup
n∈N0

|∆(Tx)(n)| ≤ Mφ−1

(
Q

1−∑∞
n=0 βn

)
≤ c.

It follows that ||Tx|| = max
{

maxn∈N0

|(Tx)(n)|
1+n ,maxn∈N0 |∆(Tx)(n)|

}

≤ c. Then T : Pc → Pc.
Step 2. Prove that

{y ∈ P (γ, θ, α; a, b, c)|α(x) > a}
= {y ∈ P (γ, θ, α; e2, 2(1 + k2)e2, c) |α(x) > e2} 6= ∅

and α(Tx) > e2 for every x ∈ P (γ, θ, α; e2, 2(1 + k2)e2, c) ;
Choose

x(n) =
{

2(1 + k2)
∑∞

n=1 αn, n = 0,
2(1 + k2), n ≥ 1.

Then x ∈ P and

α(x) = min
n∈[k1,k2]

x(n)
1 + n

= 2e2 > e2,

θ(x) = sup
n∈N0

x(n)
1 + n

≤ 2(1 + k2)e2 ≤ b,

and
γ(x) = sup

n∈N0

|∆x(n)| < c.

It follows that {y ∈ P (γ, θ, α; a, b, c)|α(x) > a} 6= ∅.
For x ∈ P (γ, θ, α; a, b, c), one has that

α(x) = min
n∈[k1,k2]

x(n)
1 + n

≥ e2,
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θ(x) = sup
n∈N0

x(n)
1 + n

≤ 2(1 + k2)e2,

and

γ(x) = sup
n∈N0

|∆x(n)| ≤ c.

Then

e2 ≤ x(n)
1 + n

≤ 2(1 + k2)e2, n ∈ [k1, k2], 0 ≤ ∆x(n) ≤ c.

Thus (A2) implies that

f(n, x(n + 1),∆x(n), ∆x(n + 1)) ≥ W

2n+1
, n ∈ [k1, k2].

We get

α(Tx) = min
n∈[k1,k2]

(Tx)(n)
1 + n

≥ (Tx)(k1)
1 + k2

=
1

1 + k2

(
Bx +

k1−1∑

k=0

φ−1

(
φ(Ax) +

∞∑

s=k

f(s, x(s), ∆x(s))

))

≥ 1
1 + k2

k1−1∑

k=0

φ−1




k2∑

s=k1

f(s, x(s), ∆x(s))




≥ 1
1 + k2

k1−1∑

k=0

φ−1




k2∑

s=k1

W

2s+1




≥ k1

1 + k2
φ−1

(
2k1+2 − 22k1−k2−1

)
φ−1(W )

= e2.

This completes Step 2.
Step 3. Prove that

{y ∈Q(γ, θ, ψ; h, d, c)|β(x) < d}

=
{

y ∈ Q

(
γ, θ, ψ;

e1

2(1 + k2)
, e1, c

)
|β(x) < e1

}
6= ∅
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and

β(Tx) < e1

for every x ∈ Q(γ, θ, ψ; h, d, c) = Q

(
γ, θ, ψ;

e1

2(1 + k2)
, e1, c

)
;

Choose

x(n) =
{

e1
∑∞

n=1 αn, n = 0,
e1, n ≥ 1.

Then x ∈ P , and

ψ(x) = min
n∈[k1,k2]

x(n
1 + n

=
e1

1 + k2
≥ h,

β(x) = θ(x) = sup
n∈N0

x(n)
1 + n

< e1 = d,

and

γ(x) = sup
n∈N0

|∆x(n)| ≤ c.

It follows that {y ∈ Q(γ, θ, ψ; h, d, c)|β(x) < d} 6= ∅.
For x ∈ Q(γ, θ, ψ;h, d, c), one has that

ψ(x) = min
n∈[k1,k2]

x(n)
1 + n

≥ e1

2(1 + k2
,

θ(x) = sup
n∈N0

x(n)
1 + n

≤ d = e1,

and

γ(x) = sup
n∈N0

|∆x(n)| ≤ c.

Hence we get that

0 ≤ x(n)
1 + n

≤ e1, n ∈ N0; 0 ≤ ∆x(n) ≤ c, n ∈ N0.

Then (A3) implies that

f(n, x(n + 1), ∆x(n),∆x(n + 1)) ≤ E

2n+1
, n ∈ N0.



Existence of positive solutions for BVPs to infinite difference equations 659

So (19) implies that

β(Tx)

= sup
n∈N0

(Tx)(n)

1 + n

= sup
n∈N0

(
Bx

1 + n
+

1

1 + n
+

n−1∑
i=0

φ−1

(
φ(Ax) +

∞∑
j=i

f(j, x(j), ∆x(j))

))

≤ sup
n∈N0

[ 1
1−∑∞

n=1 αn

∑∞
n=1 αn

∑n−1
k=0 φ−1

(
φ(Ax) +

∑∞
s=k f(s, x(s), ∆x(s))

)

1 + n

+
1

1 + n

n−1∑

k=0

φ−1

(
φ(Ax) +

∞∑

s=k

f(s, x(s), ∆x(s))

)]

≤ sup
n∈N0




1
1−∑∞

n=1 αn

∑∞
n=1 αn

∑n−1
k=0 φ−1

(
1

1−∑∞
n=1 βn

∑∞
j=0 f(j, x(j), ∆x(j))

)

1 + n

+
1

1 + n

n−1∑

k=0

φ−1

(
1

1−∑∞
n=1 βn

∞∑
j=0

f(j, x(j), ∆x(j))

)]

≤ sup
n∈N0




1
1−∑∞

n=1 αn

∑∞
n=1 αn

∑n−1
k=0 φ−1

(
1

1−∑∞
n=1 βn

∑∞
j=0

E
2j+1

)

1 + n

+
1

1 + n

n−1∑

k=0

φ−1

(
1

1−∑∞
n=1 βn

∞∑
j=0

E

2j+1

)]

<

[
1 +

∑∞
n=1 nαn

1−∑∞
n=1 αn

]
φ−1

(
1

1−∑∞
n=1

)
φ−1(E)

≤ e1 = d.

This completes Step 3.
Step 4. Prove that α(Ty) > a for y ∈ P (γ, α; a, c) with θ(Ty) > b;
For x ∈ P (γ, α; a, c) = P (γ, α; e2, c) with θ(Tx) = β(Tx) > b =

2(1 + k2)e2, we have that α(x) = minn∈[k1,k2]
x(n)
1+n ≥ e2 and γ(x) =

supn∈N0
|∆x(n)| ≤ c and supn∈N0

(Tx)(n)
1+n > 2(1 + k2)e2. Then

α(Tx) = min
n∈[k1,k2]

(Tx)(n)
1 + n

≥ 1
2(1 + k2)

β(Tx) > e2 = a.

This completes Step 4.
Step 5. Prove that β(Tx) < d for each x ∈ Q(γ, β; d, c) with

ψ(Tx) < h.

For x ∈ Q(γ, β; d, c) with ψ(Tx) < d, we have γ(x) = supn∈N0
|∆x(n)|

≤ c and β(x) = supn∈N0

x(n)
1+n ≤ d = e1 and ψ(Tx) = minn∈[k1,k2]

(Tx)(n)
1+n
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< h = e1
2(1+k2) . Then

β(Tx) = sup
n∈N0

(Tx)(n)
1 + n

≤ 2(1 + k2) min
n∈[k1,k2]

(Tx)(n)
1 + n

< e1 = d.

This completes the Step 5.
Then Lemma 2.4 implies that T has at least three fixed points y1, y2

and y3 such that

β(y1) < e1, α(y2) > e2, β(y3) > e1, α(y3) < e2.

Hence BVP(1.1) has three positive solutions y1, y2 and y3 such that

sup
n∈N0

x1(n)
1 + n

< e1, min
n∈[k1,k2]

x2(n)
1 + n

> e2,

and

sup
n∈N0

x3(n)
1 + n

> e1, min
n∈[k1,k2]

x3(n)
1 + n

< e2.

The proof is complete.

3. An example

In this section, we present an example to illustrate the main result.

Example 3.1. Consider the following BVP

(3.1)





∆2x(n) + f(n, x(n), ∆x(n), ) = 0, n ∈ N0,
x(0) =

∑∞
n=1

1
n2n+1 x(n),

limn→∞∆x(n) =
∑∞

n=1
1

2n+1 ∆x(n),

where f(n, x, y) is a nonnegative S-Caratheodory function which is de-
fined by

f(n, x, y) =
1

2n+1
f0

(
x

1 + n

)
+

y

1030000n

with f0(x) satisfying

f0(x) =





ln 2
12−4 ln 2x, x ∈ [0, 100],

872100+ 52×1350
26−2−96− 25 ln 2

3−ln 2

5400−100 (x− 100) + 25 ln 2
3−ln 2 , x ∈ [100, 5400],

872100 + 52×1350
26−2−96 , x ∈ [5400, 3488400],

872100 + 52×1350
26−2−96 ex−3488400, x ≥ 3488400.

Then
f(n, (1 + n)x, u) =

1
2n+1

f0 (x) +
y

1030000n
.

It is easy to show that f is a S-Caratheodory function.
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Corresponding to BVP(1.1), we have φ(x) = φ−1(x) = x, αn = 1
n2n+1

and βn = 1
2n+1 . One sees

0 <
∞∑

n=1

αn < 1, 0 <
∞∑

n=1

nαn < ∞, 0 <
∞∑

n=1

βn < 1.

Choose the constant k1 = 4 and k2 = 103, e1 = 100, e2 = 5400, c =
3488400, then

c ≥ 2(1 + k2)e2 > e2 > e1 > 0.

One sees that

M = max
{

1,

∑∞
n=1 nαn

1−∑∞
n=1 αn

}
= 1,

Q = φ
( c

M

) (
1−

∞∑

n=1

βn

)
= 1744200;

W =
1

2k1+2 − 22k1−k2−1
φ

(
(1 + k2)e2

k1

)
=

104× 1350
26 − 2−96

;

E =

(
1−

∞∑

n=1

βn

)
φ

(
e1 (1−∑∞

n=1 αn)
1−∑∞

n=1 αn +
∑∞

n=1 nαn

)
=

50 ln 2
3− ln 2

.

Hence Q > W . If
(A1) f(n, (1 + n)x, u) ≤ 1744200

2n+1 for all n ∈ N0, x ∈ [0, 3488400], u ∈
[0, 3488400];

(A2) f(n, (1+n)x, u) ≥ 104×1350
26−2−96

1
2n+1 for all n ∈ [4, 103], x ∈ [5400, 208

×5400], u ∈ [0, 3488400];
(A3) f(n, (1 + n)x, u) ≤ 50 ln 2

3−ln 2
1

2n+1 for all n ∈ N0, x ∈ [0, 100], u ∈
[0, 3488400];

then Theorem L implies that BVP(3.1) has at least three positive
solutions x1, x2, x3 such that

sup
n∈N)

x1(n)
1 + n

< 100, min
n∈[4,103]

x2(n)
1 + n

> 5400,

and

sup
n∈N0

x3(n)
1 + n

> 100, min
n∈[4,103]

x3(n)
1 + n

< 5400.
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