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EXISTENCE OF POSITIVE SOLUTIONS FOR BVPS TO
INFINITE DIFFERENCE EQUATIONS WITH
ONE-DIMENSIONAL p-LAPLACIAN

YuJjt Liu*

ABSTRACT. Motivated by Agarwal and O’Regan ( Boundary value
problems for general discrete systems on infinite intervals, Comput.
Math. Appl. 33(1997)85-99), this article deals with the discrete
type BVP of the infinite difference equations. The sufficient condi-
tions to guarantee the existence of at least three positive solutions
are established. An example is presented to illustrate the main re-
sults. It is the purpose of this paper to show that the approach to
get positive solutions of BVPs by using multi-fixed-point theorems
can be extended to treat BVPs for infinite difference equations. The
strong Caratheodory (S-Caratheodory) function is defined in this

paper.

1. Introduction

Let No = {0,1,2,3,---} and N = {1,2,3,---}. Denote S.°_, x(i)
= z(a)+x(a+1)+---+x(b) for a,b € Ny with a <band >0__ 2(i) =0
if a,b € Ny and b < a. In recent years, there have been many papers
discussed with the solvability of boundary value problems for finite differ-
ence equations, see [1-21], we know except [22] no other paper concerns
with the boundary value problems for infinite difference equations.

The purpose of this paper is to investigate the following boundary

value problem (BVP for short) for the second order p-Laplacian infinite
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difference equation

Alp(Az(n))] + f(n,z(n), Az(n)) =0, n € No,
(1.1) 2(0) = S50, anr(n) = 0,

limy, 00 Ay(n) - ZZO:1 ﬁnAy(n) =0,,
where ay,, 8, > 0 for all n € N with

Zan<1, Znan<oo, Zﬂn<1,

neN NeN neN
f: Nox[0,00)% — [0, 00) is a S-Caratheodory function (strong Caratheodory

function), i.e., for each n € Ny f(n,-,-) is continuous, and for each r > 0
there exists a nonnegative sequence {1, (n)} with

Z YPr(n) < oo, ZZ@(]’) < +00

neNg n=0j=n
such that
[f(n, (L +n)z,y)| < ¢p(n) for all n € No, |z, [y| <,
f(n,0,0) # 0 for all n € Ny, ¢ is called p—Laplacian, ¢(z) = |z|P~%z
with p > 1, its inverse function is denoted by ¢~!(z) with ¢~ !(x) =
|z|97 22 with 1/p+1/q = 1.

We establish sufficient conditions for the existence of at least three
positive solutions of BVP(1).

The remainder of this paper is organized as follows: to get the main
results, in Section 2, we first give seven lemmas and then construct an
operator in cones in a suitable Banach space, then the proof of Theorem
L is presented at the end of this section. An example is given in Section
3 to illustrate the main results.

2. Main results

Choose
X ={{z(n)}:xz(n) € R,n € Ny
there exist the limits lim M, lim Az(n)}.
n—oon 4+ 1 n—oo
Define the norm

|z(n)| }

r|| = max ¢ sup ———, sup |Az(n)| ;.

ol = mae { sup FL s (o)

It is easy to see that X is a real Banach space.
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Let k1, ko € N with ki < ky. Choose

x(n) > 0 for all n € Ny,
Az(n) > 0 for all n € Ny,

(21) P=qz€X: min,p, i) 13—3 > 72(1J1rk2) SUPpe N, 1332, )
2(0) — 3-p2y cum(n) =0,
lim,, o0 Az(n) — Y 07 | BpAz(n) =0

Suppose A >0 and p =AY - apn. Set

_ ) mn=0,
zo(n) = { A,n € N.
It is easy to see that xg € P. Then P is a nontrivial cone in X.
Let h(n)(n € No) be a nonnegative sequence with ) . h(n) con-
verging, consider the following BVP
Alp(Ay(n))] + h(n) =0, n € No,
(2.2) y(0) = 222 @iy(n) =0,
limy, o0 Ay(n) - 2720:1 ﬁsz(n) =0,
LEMMA 2.1. If y is a solution of BVP(2.2), then y(n) > 0 and
Ay(n) > 0 for all n € Ny, Ay(n) is decreasing.

Proof. Since A[¢p(Ay(n))] = —h(n) < 0 for all n € Ny, we get that
¢(Ay(n)) is decreasing. Then Ay(n) is decreasing. It follows from the
boundary conditions that

lim Ay(n Z@Ay Z 11m Ay(n
Then
(1 - Z@) lim Ay(n) >0
n=1

Since > 2, B < 1,, we get lim, oo Ay(n) > 0. Together with the
decreasing property of Ay(n), we get Ay(n) > 0 for all n € Ny. Thus

= Z aiy(n) = Zaiy(o)
n=1 n=1

Since > 02 a; < 1, we get y(0) > 0. Together with the increasing
property of y(n), we get y(n) > 0 for all n € Ny. The proof is complete.
O
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LEMMA 2.2. Suppose y is a solution of BVP(2.2). Then

n—1 o'}
(23)  yn)=Br+Y ¢ <</>(Ah) +> h(5)> , n € No,
k=0 s=k

where Aj, satisfies

(2.4) Ay =) Buo! <¢>(Ah) +)° h(s)) ;
n=1 s=n

and

(2.5) By, = Z o, Zaﬁ ! ( (An)+ h(S)) -
n 1 Qn n=0 s=k

Further more, we have

o,qﬁ‘l( n= 16”6 Zh )]
n 1 L

Proof. Since > > h(n) converges, we get from (3) that

(2.6) Ay €

$(Ay(o0)) — p(Ay(n)) = =D h(s)

So

Ay(n) = ¢! (¢(Ay(00)) +y h(S)) :

It follows that

n—1 00
0)+> o7 <¢(AZ/(OO)) +y h(S)) , n e Np.
k=0 s=k
It follows from the boundary conditions that
Zan+2an2¢ < ))+Zh(s))
n=1 o—Fk

and

SEDI <¢(Ay(00)) + h(é’)) :
n=1 s§=n
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Let Ay(oco) = Aj, and Bj, = y(0). Then we get (2.3), (2.4), and (2.5).
Now, from Lemma 2.1, we see Ay(oco) = Aj, > 0. On the other hand,

let
D oen h(8)>
o(c) '

It is easy to see that G(c) is continuous on (0, 00) and is strictly increas-
ing on (0, 00). Since

G(c)=1- Zﬂnﬁbil <1 +
n=1

lim G(c) = —o0,

c—0t

(g

n

Sy ot (14 SRR TR0
20 TS S )

(B B
oo (B )]

n

and

It follows that

Ay(oo) = Ap €

The proof is complete. O
LEMMA 2.3. If y is a solution of BVP(2.2), then

1
(2.7) min y(n) > sup y(n) .
nelkika] L+n = 2(1 4+ k2) nen, L+ 1

Proof. 1t follow from Lemma 2.1 that y(n) > 0 and Ay(n) > 0 for
n € Ny, Ay(n) is decreasing. Since there exists the limit lim,, . Ay(n),
we can prove that there exists the limit lim,, . % In fact, suppose
that lim,, . Ay(n) = c. If ¢ =0, then for any € > 0 there exists H > 0
such that

|Ay(n)| < %, n > H.
It follows that

n—1
[y(n)| < [y(E)|+ Y 1Ay(s)| < [y(H)| + S(n— H), n> H.
s=H

Then

y(m)| )| n-He _|y(H)]

< -, n>H.
1+n 1+n 1+n 2 1+n 2
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Choose H' > H large enough so that

o)l W
14+n 1+n 2
which implies that
lim 7y(n) =
n—oo 1 +mn

If ¢ # 0, then limy—o (Ay(n) — ¢) = 0. It follows that
lim A [y(n) - cn] =0.
t—o0
Then we get similarly that
lim ) = _

t—woo 14+n

It follows that lim,,— s % = c. It follows that there exists the number

y(n)
sup .
neNy 1 +n

To complete the proof, we consider two cases:

Case 1. there is ng € Ny such that sup,,¢y, % = 31’5:1?3

For ny,n,ne € Ny with ny < n < no, we have

(n—m o +y(n1) —y(n)

_ (n=m1)(y(n2) —y(n)) + (na — n)(y(n1) — y(n))

)y(nz) —y(n)
na

no —n
_ (n—m) 32 Ay(s) — (n2 — ) 5055, Ay(s)
no —n
_ (=) 3, Ay(s) + (n— m) 3502, Ay(s).
no —n

Since Ay(n) is decreasing, we get Ay(s) < Ay(k) for all s > k. Then
we get

n—1 na—1
(e —m) S Ay(s) = (n—m1) 3 Ay(s),
So
y(n2) —y(n)

(n —m1) +y(m) —y(n) <0.

ng —n
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It follows that

(2.8) y(n) >

If ng = k1, we get

k 1+ k 1
min 200 o yU) (o) Tk wp V)
nelbike] 14+mn — 14+ky  14+ngl+ky = 2(14+k2) nen, 1 +1n

If ng > kq, by using (2.8) we have

y(k1) = vy <w(k1 1)+ ]{71_(1{71_1)”0>

no—(k‘l—l) ’rl(]—(k‘l—l)
> by -y B D

1+ny  y(no)
no— (k1 —1)1+ng

Then
i B0 ()
nE[kl,kg] 1 +n 1 + kQ
1 I+no  y(no) S 1 y(n)

> su .
=Tt kang— (bi— 1) 1+no0 = 2(1+ ko) memy L+ 7

If ng < k1, we have

. yn)
min
nelky,ka] 1+ 1
- y(k)
— 14 ke
1 ((2]{21—}-1—77,0)—]{31
= Yy no
14 ko (2k1 +1—mng) —no
k1 —mno
2k 1-—
+(2k1+1—n0)—n0( 1+ no))
>

1 [(2k’1+1—n0)—k1

1+ k2 (2]{}1 +1- no) — noy(nO)
k1 —no

2k1 +1—

+(2k1+17n0)7n0y( 1+ no)}
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L (k1 +1—mn0)(1+no) y(no)
1+ ko 2k1 +1—2ng 14+ ng

1
> sup y(n)

2(1 4 k2) nen, L +n

n . n
Case 2. sup,cy, % = lim,— oo %

Choose n’ > ko, similarly to Case 1 we can prove that
/
i V) 1 ()
nefkike) 14+n — 2(1+ ko) 1+ n/

Let n’ — oo, one sees

i M) 1)
nelki,k2] 1 +n 2(1 +k2) n€Ng 1+n

From Cases 1 and 2, we get (2.7). The proof is complete. O
Now, we state some definitions and a very novel fixed point theorem

called five functional fixed point theorem, whose proof can be found in
[15].

DEFINITION 2.4. [15] A map ¢ : P — [0,400) is a nonnegative
continuous concave or convex functional map provided v is nonnegative,
continuous and satisfies

Ptz + (1= t)y) > th(x) + (1 = )v(y),
Ptz + (1= t)y) < tp(x) + (1 - )v(y),
for all z,y € P and t € [0, 1].

DEFINITION 2.5. [15] An operator T'; X — X is completely continu-
ous if it is continuous and maps bounded sets into pre-compact sets.

DEFINITION 2.6. [15] Let a, b, ¢,d, h > 0 be positive constants, «, 1) be
two nonnegative continuous concave functionals on the cone P, v, 3,60 be
three nonnegative continuous convex functionals on the cone P. Define
the convex sets as follows:

P.={z e P:||lz|]| <c},

P(v,a;a,¢c) ={z € P:a(z) > a, v(z) < c},
P(v,0,0;a,b,c) ={zx € P:a(x) >a, 0(x) <b, v(z) <c},
Q(v,B;,d,c) ={z € P: B(z) < d, v(z) < c},

Q. 8,3 hyd,c) ={z € P:4(zx) > h, B(z) < d, y(z) < c}.
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LEMMA 2.7. [15] Let X be a real Banach space, P be a cone in X,
«, 1 be two nonnegative continuous concave functionals on the cone P,
v, 3,0 be three nonnegative continuous convex functionals on the cone
P. There exist constant M > 0 such that

a(z) < B(z), ||z|| < M~y(zx) for all x € P.
Furthermore, Suppose that h,d,a,b,c > 0 are constants with d < a. Let

T : P.— P. be a completely continuous operator. If
(C1) {y € P(1,0,0:a,b,0)|a(z) > a} £ 0 and
a(Tx) > a for every x € P(v,0,q;a,b,c);
(C2) {y €Q(7,0,¢;h,d,c)|B(x) <d} # 0 and
B(Tx) < d for every x € Q(,0,v;h,d,c);
(C3) a(Ty) > a fory € P(y,a;5a,c) with 0(Ty) > b;
(C4) B(T'z) < d for each x € Q(v,B;,d,c) with ¢(Tx) < h,
then T has at least three fixed points y1, yo and y3 such that
Bly) < d, a(y2) > a, B(ys) > d, a(ys) < a.
Define the functionals on P : P — R by

Az) = sup [Az(n)], v € P,
n€eNy
ba) = sp A aep
n6N01+n
(n)
0(x) = sup ——, x € P,
( ) nEZI\?O 1+n
a(r) = min , x € P,

z e P.

min ,
ne[kl,kz] ]. +n

LEMMA 2.8. Ify is a solution of BVP(2.2), we have ||y||| < M~(y)
for all y € P, where

D el MO
2.9 M = 1, =8=—— .
29 mec {1 TR
Proof. Since y is the solution of BVP(3), we get
n—1
y()| = ly(n) —y(0) +y(O)| = | > Ay(@)| + | Y any(n)
=0 neN
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o —y(0
< 0 up g+ Becy o) 510
neNy z laZ
St an >y [Ay(s)|
< n sup |Ay(n)| + =2= 5=
n€N0| ! 13270 o
Zool noy )
< (n+-FrS— ) sup |Ay(n).
( 1= @ ) neng
It follows that
Z?f:l”an
y(n) n+ 1_2(‘21 (673
< L sup |Ay(n
T+n S 1tn S Ayl
> one1 M0 }
<max<¢1l, ==_—— % sup |Ay(n)|.
{ 1_21 1 ne Ny
we get that
Y
ol = mx sup P sup (o)1}
neNg - neNy

IA

max{l, Z;‘“} sup |Ay(n)|

1- Zi:l Qi ) neNy

- S b

Then ||y|| < M~(y) for all y € P. The proof is complete.

For x € P, define (T'z)(n) by

n—1 o]
(Tz)(n) =B+ Y ¢~ (¢(Ax) +3 fls.a(s), Ax(s))) , ne Ny,
k=0 s=k

where A, satisfies

(2.10) A, = Zﬂngb*l (qﬁ(Am) + Z f(s,x(s), Ax(s))) ,
n=1 s=n

and
(2.11)

B, = Zan2¢ 1 ( (4,) + Zf<s,x<s>,m<s>>> .
s=k

n=1
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One sees easily that

Alp(A(Tz)(n))] + f(n,x(n), Az(n)) =0, n € N,
(2.12) (T2)(0) - %, 0i(T)(i) = 0,

limy, o0 A(Tz)(n) — > 72, BiA(Tx) () = 0.

By Lemma 2.2, we have

(2.13) 0,6~ ( 2n=1 Pn anm ())].
nlﬂnno
O
LEMMA 2.9. Let V = {z € X : |jz|| < 1}(I > 0). If{%:er}

and {Az(n) : x € V'} are both equiconvergent at infinity, where
(n)
=: : A :
Vi {1+n meV}'l{ xz(n):z eV}

is called equiconvergent at infinity if and only if for all ¢ > 0, there exists
N = N(e) > 0 such that for all x € V', it holds that

z(n1)  z(n2)
1+m 14+ ng
Then V is pre-compact on X.

<€, |[Az(n1) — Az(ng)| < € ni,ng > N.

Proof. The proof is similar to that of the proof of Lemma in [22] and
is omitted. O

LEMMA 2.10. It holds that

(i) Tz € P for each x € P;

(ii) =z is a solution of BVP(1) if and only if x is a solution of the
operator equation x = T'x;

(iii) T : P — P is completely continuous;

Proof. (i) Note the definition of P. For z € P, Lemma 2.1, Lemma 2.2

and Lemma 2.3 imply that y(n) > 0, Ay(n) > 0 for alln € Ny, A(Tx)(n)

is decreasing and ming, g, k,] (71‘?7(1”) > 2(141rk:2) SUP,eN, (71327(1"). Together

with (2.12), it follows that Tz € P.

(ii) It is easy to see from (13) that x is a solution of BVP(1) if and
only if x is a solution of the operator equation x = Tx.

(iv) It suffices to prove that 7" is continuous on P and 7" maps bounded
subsets into pre-compact sets. We divide the proof into four steps:

Step 1. For each bounded subset D C P, prove that {(A4,, B,) : « €
D} is bounded in R?, where A, and B, are given in (2.10) and (2.11).
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Denote
|z(n)| =
Li=s ax ———, s A : eD
= g s Ao 2

and

BLl(j): max |f(]a(1+])x7y)‘
|I‘,|y|§L1

Since f is a S-Caratheodory function, it follows from (2.13) that

0<A: <o | 5 1% ZBM < o0,
nln

and B, satisfies that
0 < |B;

- 1_21931% Zo‘j Z¢_l <¢(Ax) + Zf(s, z(s), Aa:(s)))
< Z]ayﬁb ( ~ 3, Zf s, x( )))

s=0

1
S rrmane” (ena Lo

=1 =0
< Q.

Hence {(A;, B;) : * € D} is bounded in R%.

Step 2. For each bounded subset D C P, and each xg € D, prove
that T is continuous at xg.

For 29 € D and z, € D with 2, — xo(n — 400) in D. Denote
un(k) = (Tzy)(k),ug(k) = (T'xo)(k) for all k € Ny. We prove that T is
continuous at zg, i.e., u, — up(n — +00). Let Ay, By, be defined by

(2.14) Agy =Y o™ <¢<Axo> +3° f(s,2(5), Am(s») ,

and
(2.15)

Buy = {5 - Z%Zcﬁ < xo)+2f(87$(8),Afﬂ(S))>-
n=1 s=k

First, we prove that A,, Bx are continuous in z, i.e.,
(Az,, Bz,) — (AﬂcmBEo)a n — +00.
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It follows from Step 1 that (A, Bg,) is bounded. Without loss of
generality, suppose that (A, , Bg,) — (4, B) # (Azy, Bay)-
It is easy to see that

lim  uy,(k)

n—-4oo

n—+o0o

k—1
= lim an+z¢_1 Az, +Zf Jyxn(7), Az (4))
— §+Z¢)_1 ¢(Z —|— hm Zf ]73311 Axn( ))
=0

= B+ o7 | o(@)+ lim Zf Jrzo(5), Azo(j))

One sees that B = 1(0), A = lim,, .o, Au(n) and @ satisfies

- 3 a;u(i) =0, lim Au(n BiAu(i)
2 Jim, Z
i=1

Z - Z/Bn¢_1 <¢(A) + Z f(S,ﬂZ(S), Am(s))> ’

sS=n

It follows from Lemma 2.2, (2.14) and (2.15) that A = A,,, then B =
Ba,.
Hence

(Aﬂfn?Bﬂ?n) - (ng) = (AzcoaBzL’o)y n — +0o0.

This together with the continuous property of f implies that 7T is con-
tinuous at xzg.
Step 3. For each bounded subset 2 C P, prove that T2 is bounded.
In fact, for each bounded subset 2 C D, and x € 2. Suppose

|z(n)|
—m A <M
HH?H aX{nSélpO 14+n’ ne[0N+1]| :1:( )y =M
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and Step 1 implies that there exist constants My > 0 such that |A,|, | Bz|
< Ms> for all z € Q. Then

|(Tz)(n)|
1+n

n—1 0
= Bty (qs(Am) - Zf(j,m(j),Arc(j)))
i=0 J=t

IN

M, 1 < .
+ Yoo 6(M2) + DG 2(), Ax())]

1+4n 14n“4 —
=0 j=t

VAN
=
+
™
<

J=0

n—1 0
> (¢<M2> +3 I (j))

AN
S
+
ASE

! <¢<M2) +> fy (j))

Jj=0

where fur, () = max <, << [f(G, (1 + j)z,y)|. Similarly, one
has that

A(Tz)(n)| = |o7 (¢(Ax)+2f(j,w(j)>&v(j)))

IN

¢! <¢(M2) +Y fan (j)) =: M.

=0

It follows that T°Q2 is bounded.

Step 4. For each bounded subset 0 C P, prove that T} is pre-
compact.

Since |Az| < Ma, we get

$(Ar) + D f(n,z(n), Az(n)) < ¢(My).
n=0
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Then there £ € [¢(Az), $(As) + X2, (G2 (), Ag:(j))} such that

|A(Tz)(n) — Aqg|

¢! <¢(Ax) + > G, 0), Aiﬂ(j))) — Ay

= (¢ 12> fG,2(), Az(j))

Jj=n

< (g=De(M)* 2> f(Gx()), Ax(h))
j=n
— 0 uniformly as n — oc.
For any € > 0, there exists Ny > 0 such that
(2.16) |A(Tx)(n1) — A(Tx)(n2)| <€, n> Ny

Now, noting that f is S-Caratheodory function, one sees that there exists

& € |0(An),@(Aa) + D 1F (G 2(), Ax ()]
such that
‘ (T2)m) _
1+n
B, Xig o7 (0(A0) + 310G w(5), Ax())])
T |1+n * 1+n — 4
_ 1Bal A
- 14+n 14+n
B 07 (04 + T4 111G 20). Ae@)]) = Ao
1+n
onty S0 [o (0040 + 3215 G 2, A ()] ) — Ad]
< +
— 14n 14+n
oMy (- D)X TR G2 (), Ax()))
= +
1+n 1+n

2y (7= Do(Mg)=2 00 %, far, ()
14+n 1+n

IN
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_ 2M N (¢ = 1)p(My)T2 37220 5222 fan ()
- 1+n 1+n
— 0 uniformly as n — oco.

So there exists Na . > 0 such that

(2.17) ‘<Tx><m> (Tz)(n2)

1+n 1+ no
Choose Ne = max {Ni,, Na}. Then

(Tz)(n1) _ (T)(n2)

1+m 1+ no

<€ n> Ny

IA(Tz)(n1) — A(Tz)(n2)| < e, <€ n> N

One knows that TQ) is pre-compact. Lemma 2.6 with Steps 1, 2, 3 and
4 imply that T is completely continuous. O

Theorem L. Suppose that there exist positive constants ey, es,c
such that

c>2(1+ky)es > eq >e1 > 0.

Let

@ = o(5) (“Zﬁn)s

n=1
1 1+k
W= Shim gk e 1? <( k12)62> ;
_ _ - er (1 =207 ay) >

E = (1 ;ﬂn> ¢ (1 TS £ an )

If Q > W and

(A1) f(n,(14+n)u,v) < 231 for all n € Ny, u € [0,¢],v € [0, cl;
(A2) f(n,(1+n)u,v) > sgr for all n € [ky, ka],u € [e2,2(1 +
ka)es],v € [0, ¢];

(A3) f(n,(1+n)u,v) < 2,1% for all n € No,u € [0,e1],v € [0, ¢];
then BVP(1.1) has at least three positive solutions x1,xs,x3 such
that
sup z1(n) < e, min z2(n) e,
neNg 1+n nG[kl,kg] 1+n
and
sup M >e min z3(n) €.

neNg 1L +m b nelki,ke] 1 +n
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Proof. To apply Lemma 2.4, we prove that all conditions in Lemma
2.4 are satisfied. By the definitions, it is easy to see that «, are two
nonnegative continuous concave functionals on the cone P, ~, 3,0 are
three nonnegative continuous convex functionals on the cone P.

One sees a(zr) < f(x) for all x € P. From Lemma 2.5, we have
[|z|| < M~(x) for all z € P.

Lemma 2.7 implies that z = x(n) is a solution of BVP(1) if and only
if x is a solution of the operator equation = Tz and T : P — P is
completely continuous.

Corresponding to Lemma 2.4,

€1
= d= =€y, b=2(1+k =c.
21+ )’ e1, a= ey, (14 Fkg)ea, c=c

Now, we prove that all conditions of Lemma 2.4 hold. One sees that
0 < d < a. The remainder is divided into four steps.

Step 1. Prove that T: P, — P,;

For x € P., we have ||z|| < c. Then 0 < ¥ ( ) ~<cand 0 < Az(n) <c
for n € Ny. So (Al) implies that

f(n,z(n),Az(n)) = f (n, (1+n) z(n) 7Aac(n)) < gne1e € No.

1+n

It follows from Lemma 2.7 that Tz € P. One sees from Lemma 2.2 that

(2.18) 0<d, <ot | s 1ﬁ1nﬂn Zf g, 2(j), Az(j))

We have that

A(Tz)(n)] = |¢7 ¢(Ax)+2f(j,x(j)7ﬁﬂf(j))
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IN

e 161an Zf g, (5), Ax(5))

+ 3 10, 2(5), Ax(j))
j=n

4 1 — Q
= QS (12201ﬁnjz(:)2j+1>

-1 Q
=@ (1—2?_oﬁn> =

From Lemma 2.5, we have

T < o sup AT < Mo~ (5 ) <

It follows that ||Tz|| = max {maxneNO KTQE);”)‘,IH&XneNo \A(Tx)(n)|}

1+
<¢. ThenT: P. — P..
Step 2. Prove that

{y € P(7,0,0;0,b,0)|a(z) > a}
={y € P (7,0, a5e2,2(1 + kz)ea, c) [a(z) > ea} # 0
and a(Tx) > ey for every x € P (7,0, a;e2,2(1 + ka)ea, ) ;

Choose
20+ k)Y 0l an,n=0,
#(n) = { 2(1 + ka),n > 1.

Then z € P and

a(x) = min = 2e9 > eg,
( ) nelk,ka] 1+n 2 2
O(r) = sup 1+ ka)ea < b,

(@) = sup T < 2(1 4 ko)

and

It follows that {y € P(v,0,a;a,b,c)|a(z) > a} # 0.
For x € P(v,0,a;a,b,c), one has that
(n)

a(x) = min > e,
() ne[kl,k2]1—|—n— 2
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z(n)
0(x) = <2(1+k )
(z) s, S (1+k2)es
and
y(z) = sup |Az(n)| <c
ne Ny
Then
z(n)
es < < 2(1 4 ko)ea, n € [k1, k2], 0<Az(n)<ec.

ST s <
Thus (A2) implies that

657

f(n,z(n+1),Az(n), Az(n+1)) > 22‘;, n € [k, ko]
We get
_ - (Tz)(n)
alfz) = nelks] 1+n
@)k
14k
k1—1 00
k=0 s=k
1 k1—1 ko
Z Tkﬁ Z ¢_1 Z f(S,IL‘(S),AZL‘(S))
k=0 s=kq
1 k1—1 . ko W
Z Tk PO DI =
k=0 s=k1
ki1 (k2 o2ki—ka—1) -1
= €9.

This completes Step 2.
Step 3. Prove that

{y €Q(v,0,v¢;h,d,c)|B(z) < d}

€1

= {y €Q (7797¢§M76170> |B(z) < 61} # 0
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and
B(Tz) < ex
el
fi 0,17:h,d,c)= 0,9; ———— :
or eVeryer(% 7¢7 ) 70) Q<77 7¢a 2(1+k2)761)c>7
Choose
ey ann=0,
z(n) = { er,n > 1.
Then z € P, and
. z(n e1
- - > h,
Vla) = min S TR
B() = 6(z) = sup ) < ey =4,
n€Ny 1 n

and

It follows that {y € Q(v,0,v;h,d,c)|B(x) < d} # 0.
For z € Q(v,0,%; h,d, c), one has that

. z(n) e1
V)= i e 230k
O(x) = sup xn) <d=e,

n€Ny +n

and

Hence we get that

0 < 20
“1+n

Then (A3) implies that

<e1, n€ No; 0<Az(n)<c, ne N

fn,z(n+1),Az(n), Az(n+1)) <
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So (19) implies that

B(T)
_ (Tz)(n)
T nehe 14m

= sup (ﬁzn + lin + i ¢t <¢(Az) + Z f(j,w(j),Ax(j))»

neNg

i=0
Ty Yot @n o @ (D(Ae) + 3052, f(5,2(s), Az(s)))
S Sup n=1
neNg 1+n
n—1 o
1 -1
+ Ton kEde’ <¢(Az) + ;Cf(s,x(s),Ax(s)))}
oy o on Tiso 67 (ot S0 160 (), Ax(i))
< sup n= ne
neNg 1+TL
1 n—1 1 %)
- (_ 1 (). Ax(
e S o Tin 0 (b Do w)
< sup a )
n€Ng 14+n
n—1 foe)
1 . 1 E
+ ¢ = .
1+nk2:0 <1Zn_lﬁn;23+1>
D1 M0 -1 1 1
< {1—1—1_ = o ] —5= ¢ (E)
S €1 = d.

This completes Step 3.
Step 4. Prove that «(Ty) > a for y € P(v, a;a,c) with 0(Ty) > b;
For x € P(y,o;a,¢) = P(v,a;ea,¢) with 0(Tz) = (Tx) > b
2(1 + ko)ez, we have that a(z) = min,cp, k) % > eg and y(x) =

SUP,en, |Az(n)] < ¢ and sup,,cn, (Tﬁgn) > 2(1 + k2)ea. Then

C@am .1
Ta) = > T —a
ollz) = i 23ty o) >e2=a

This completes Step 4.
Step 5. Prove that g(Tx) < d for each x € Q(~,f;d,c) with
Y(Tx) < h.

For z € Q(v, 8;d, c) with (T'z) < d, we have y(x) = sup,c, |Az(n)|

< cand () = sup,en, % <d=e and Y(Tz) = min, e, iy (Tﬁgl)
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< h= (1+k) Then
(Tx)(n) . (Tz)(n)
Tz) = S <214+ k ASaZAA =d.
B(Tz) :él}v)o Tn < (1+ 2)%1"[51%362] il

This completes the Step 5.
Then Lemma 2.4 implies that T" has at least three fixed points y1, yo
and ys such that

By1) < e, alyz) > ez, Blys) > e1, ays) < e
Hence BVP(1.1) has three positive solutions y1,y2 and y3 such that

1(n) - 2(n)
sup < e1, min €2,
neN, 1+n nelki,ke] 1 + 1
and
sup z3(n) > e1, min z3(n) < es.
n€Ny 1 +n ne[kl,kg] 1 +n
The proof is complete. O

3. An example

In this section, we present an example to illustrate the main result.

ExAMPLE 3.1. Consider the following BVP
A2z(n) + f(n,z(n), Az(n),) =0, n € Ny,
(3.1) z(0) = 220:1 n2711+1 z(n),
limp oo Az(n) = 300 | simr Az(n),
where f(n,x,y) is a nonnegative S-Caratheodory function which is de-
fined by

1 T Y
f(n,z,y) = on+1 fo <1 +n ) + 1(30000n

with fo(x) satisfying

Sm2 g, z € [0,100],
872100+ 52><1§50 25_1E2
folw) = o2 Tn? (o 100) + 25102 4 ¢ [100, 5400],
872100 + 53%1350 x € [5400, 3488400,
872100 + 33*532‘3 3488400, x> 3488400.

Then

1
Fln, (1 +n)2,w) = Zop o (@) + Tz

It is easy to show that f is a S-Caratheodory function.
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Corresponding to BVP(1.1), we have ¢(z) = ¢~ (2) = 2, a, = ﬁ
and 3, = 271% One sees

o0 o0 o
0<> ap <1, 0<) nap<oo, 0<Y Br<l
n=1 n=1 n=1

Choose the constant k1 = 4 and ko = 103, e; = 100, eo = 5400, ¢ =
3488400, then
622(1+k2)62 >e9 >e1 > 0.
One sees that

[ee]
M - max{l Z—lm} _1,

13 o
c o0
Q = ¢ (M> (1 - nz_:lﬂn> — 1744200:
W= 1 ___ ¢<(1—|—k‘2)€2> :104><1£350’
2k1+2 _ 22k1 ko—1 kl 26 _ 2 96

o o0
1- 501n 2
2= (1-38)o(—all - teatn) ) 02
— 1= an+>.° noy 3—In2
Hence Q > W. If
(A1) f(n,(1+n)z,u) < 20 for all n € No,z € [0,3488400], u €
[0, 3488400];
(A2) f(n, (14n)z,u) > L2330 1 for all n € [4,103], z € [5400, 208
x5400], u € [0, 3488400];
(A3) f(n,(1+n)x,u) < g‘i{ggzﬁ for all n € No,z € [0,100],u €
[0, 3488400];
then Theorem L implies that BVP(3.1) has at least three positive
solutions x1, xs, x3 such that

sup z1(n) < 100, z2(n)
nen, 1+n nef4,103] 1 +n

> 5400,

and

sup z3(n) > 100, min z3(n)

, < 5400.
neNy 1 +n ne(4,103) 1 +n
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