• Title/Summary/Keyword: Multi-physics system

Search Result 181, Processing Time 0.031 seconds

A Novel 3-D Imaging Configuration Exploiting Synthetic Aperture Ladar

  • Guo, Liang;Huang, Yinli;Li, Xiaozhen;Zeng, Xiaodong;Tang, Yu;Xing, Mengdao
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.598-603
    • /
    • 2017
  • Traditional three-dimensional (3-D) laser imaging systems are based on real aperture imaging technology, whose resolution decreases as the range increases. In this paper, we develop a novel 3-D imaging technique based on the synthetic aperture technology in which the imaging resolution is significantly improved and does not degrade with the increase of the range. We consider an imaging laser radar (ladar) system using the floodlight transmitting mode and multi-beam receiving mode. High 3-D imaging resolutions are achieved by matched filtering the linear frequency modulated (LFM) signals respectively in range, synthetic aperture along-track, and the real aperture across-track. In this paper, a novel 3-D imaging signal model is given first. Because of the motion during the transmission of a sweep, the Doppler shift induced by the continuous motion is taken into account. And then, a proper algorithm for the 3-D imaging geometry is given. Finally, simulation results validate the effectiveness of the proposed technique.

Coupled 3D thermal-hydraulic code development for performance assessment of spent nuclear fuel disposal system

  • Samuel Park;Nakkyu Chae;Pilhyeon Ju;Seungjin Seo;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3950-3960
    • /
    • 2024
  • As a solution to the problem of spent nuclear fuels (SNFs), the disposal of SNF has gained attention from nations using nuclear energy because of hazards posed to the ecosystem. Among many proposed solutions, the most promising method is to dispose of SNF in a deep geological repository (DGR) which utilizes the multi-barrier concept developed by Finland and Sweden. Here, a new fully-coupled Thermal-Hydraulic (TH) code HADES (High-level rAdionuclide Disposal Evaluation Simulator) is developed using the MOOSE framework. This new code suggests basic numerical tools, such as a non-linear solver and finite element discretization, to assess the safety performance of disposal systems. The new TH code considered various TH behavior using Richards' flow approach, assuming gas pressure is constant. The HADES showed promising results when it was compared to various TH codes validated from DECOVAELX-THMC projects. When the single-canister model was utilized to estimate the TH behavior of the Korean Reference disposal System, although it showed significant saturation reduction due to the evaporation of water, the temperature was maintained under the thermal criteria limit, which is 100 ℃. In addition, the new code estimated temperature and degree of saturation of the multi-canisters model, considering two or three canisters, it showed a slightly lower temperature, 5 ℃, than the single-canister model. From these results, the following are concluded: (1) the new TH code contribute to an additional integrity by estimating TH behavior of KRS; (2) however, due to limitations in single-canister simulation, it is recommended to use multi-canisters simulation to estimate TH behavior accurately. Therefore, this model is anticipated not only to help licensing applications and estimation of various multi-physics phenomena and multi-canister at the disposal site.

The Optical Properties of SiO2/TiO2/ZrO2 Broadband Anti-reflective Multi-layer Thin Films Prepared by RF-Magnetron Sputtering (SiO2/TiO2/ZrO2 광대역 반사방지막의 제작 및 광학적 특성 분석)

  • Kang, M.I.;Ryu, J.W.;Kim, K.W.;Kim, C.H.;Baek, Y.K.;Lee, D.H.;Lee, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.138-147
    • /
    • 2008
  • $SiO_2/TiO_2/ZrO_2$ broadband anti-reflective multi-layer thin films were prepared at room temperature by RF sputtering system. Optical constants and structural properties on each layer of films were analyzed by spectroscopic ellipsometer and transmittance spectra of the films were measured by $UV-V_{is}$ spectrophotometer in the range of 300$\sim$900 nm. To evaluate the films, we compared the measured and analyzed spectra with designed spectra. We investigated influence of discrepancy of thickness and refractive indices of each layer on changes of the transmittance spectra. It was found that refractive indices and shape of dispersion of deposition materials are more contributed to changes of the transmittance spectra than thickness of layer.

Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment (가상현실을 위한 다중 접촉 실시간 햅틱 랜더링)

  • Lee, Kyung-No;Lee, Doo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.663-671
    • /
    • 2008
  • This paper presents a real-time haptic rendering method for multi-contact interaction with virtual environments. Haptic systems often employ physics-based deformation models such as finite-element models and mass-spring models which demand heavy computational overhead. The haptic system can be designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. A multi-rate output-estimation with an exponential forgetting factor is proposed to implement real-time haptic rendering for the haptic systems with two sampling rates. The computational burden of the output-estimation increases rapidly as the number of contact points increases. To reduce the computation of the estimation, the multi-rate output-estimation with reduced parameters is developed in this paper. Performance of the new output-estimation with reduced parameters is compared with the original output-estimation with full parameters and an exponential forgetting factor. Estimated outputs are computed from the estimated input-output model at a high rate, and trace the analytical outputs computed from the deformation model. The performance is demonstrated by simulation with a linear tensor-mass model.

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

Calculation of Jaws-only IMRT (JO-IMRT) dose distributions based on the AAPM TG-119 test cases using Monte Carlo simulation and Prowess Panther treatment planning system

  • Luong, Thi Oanh;Duong, Thanh Tai;Truong, Thi Hong Loan;Chow, James CL
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4098-4105
    • /
    • 2021
  • The aim of this study is to calculate the JO-IMRT dose distributions based on the AAPM TG-119 using Monte Carlo (MC) simulation and Prowess Panther treatment planning system (TPS) (Panther, Prowess Inc., Chico, CA). JO-IMRT dose distributions of AAPM TG-119 were calculated by the TPS and were recalculated by MC simulation. The DVHs and 3D gamma index using global methods implemented in the PTW-VeriSoft with 3%/3 mm were used for evaluation. JO-IMRT dose distributions calculated by TPS and MC were matched the TG-119 goals. The gamma index passing rates with 3%/3 mm were 98.7% for multi-target, 96.0% for mock prostate, 95.4% for mock head-and-neck, and 96.6% for C-shape. The dose in the planning target volumes (PTV) for TPS was larger than that for the MC. The relative dose differences in D99 between TPS and MC for multi-target are 1.52%, 0.17% and 1.40%, for the center, superior and inferior, respectively. The differences in D95 are 0.16% for C-shape; and 0.06% for mock prostate. Mock head-and-neck difference is 0.40% in D99. In contrast, the organ curve for TPS tended to be smaller than MC values. JO-IMRT dose distributions for the AAPM TG-119 calculated by the TPS agreed well with the MC.

Multi-partite Quantum Entanglement (여러 부분으로 구성된 계의 양자 얽힘)

  • Lee, Hyuk-Jae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.88-91
    • /
    • 2006
  • We present a method describing the quantum entanglement. We knows the criterion which can determine entanglement in a bipartite system. It is difficult in mixed states. Even though the entanglement criterion for multipartite systems is difficult, we offer a criterion for multiqubits and discuss entanglement of the mixed state.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF