• Title/Summary/Keyword: Multi-physics coupling

Search Result 27, Processing Time 0.108 seconds

Platform development for multi-physics coupling and uncertainty analysis based on a unified framework

  • Guan-Hua Qian;Ren Li;Tao Yang;Xu Wang;Peng-Cheng Zhao;Ya-Nan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1791-1801
    • /
    • 2023
  • The multi-physics coupled methodologies that have been widely used to analyze the complex process occurring in nuclear reactors have also been used to the R&D of numerical reactors. The advancement in the field of computer technology has helped in the development of these methodologies. Herein, we report the integration of ADPRES code and RELAP5 code into the SALOME-ICoCo framework to form a multi-physics coupling platform. The platform exploits the supervisor architecture, serial mode, mesh one-to-one correspondence and explicit coupling methods during analysis, and the uncertainty analysis tool URANIE was used. The correctness of the platform was verified through the NEACRP-L-335 benchmark. The results obtained were in accordance with the reference values. The platform could be used to accurately determine the power peak. In addition, design margins could be gained post uncertainty analysis. The initial power, inlet coolant temperature and the mass flow of assembly property significantly influence reactor safety during the rod ejections accident (REA).

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application

  • Qian, Y.H.;Zhang, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • In this paper, the optimal extended homotopy analysis method (OEHAM) is introduced to deal with the damped Duffing resonator driven by a van der Pol oscillator, which can be described as a complex Multi-Degree-of-Freedom (MDOF) nonlinear coupling system. Ecumenically, the exact solutions of the MDOF nonlinear coupling systems are difficult to be obtained, thus the development of analytical approximation becomes an effective and meaningful approach to analyze these systems. Compared with traditional perturbation methods, HAM is more valid and available, and has been widely used for nonlinear problems in recent years. Hence, the method will be chosen to study the system in this article. In order to acquire more suitable solutions, we put forward HAM to the OEHAM. For the sake of verifying the accuracy of the above method, a series of comparisons are introduced between the results received by the OEHAM and the numerical integration method. The results in this article demonstrate that the OEHAM is an effective and robust technique for MDOF nonlinear coupling systems. Besides, the presented methods can also be broadly used for various strongly nonlinear MDOF dynamical systems.

Pt Thickness Dependence of Oscillatory Interlayer Exchange Coupling in [CoFe/Pt/CoFe]/IrMn Multilayers with Perpendicular Anisotropy

  • Lee, Sang-Suk;Choi, Jong-Gu;Kim, Sun-Wook;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.44-47
    • /
    • 2005
  • The oscillatory interlayer exchange coupling (IEC) has been shown in pinned $[CoFe/Pt(t_{pt})/CoFe]/IrMn$ multi-layers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depending on the nonmagnetic metallic Pt thickness is thought to be related the antiferromagnetic ordering induced by IrMn layer. Oscillatory IEC as function of insulating NiO thickness has been observed in $[Pt/CoFe]_4/NiO(t_{NiO})/[CoFe/Pt]_4$ multilayers. The effect of N (number of bilayer repeats) upon the magnetic property of [Pt/CoFe]N/IrMn is also studied.

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling

  • Ibrahimbegovic, Adnan;Kassiotis, Christophe;Niekamp, Rainer
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • An efficient and general numerical strategy for fluid-structure interaction problems is presented where either the fluid or the structure part are represented by nonlinear models. This partitioned strategy is implemented under the form of code coupling that allows to (re)-use previous made developments in a more general multi-physics context. This strategy and its numerical implementation is verified on classical fluid-structure interaction benchmarks, and then applied to the impact of tsunamis waves on submerged structures.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Effect of a Ferromagnetic Layer Thickness on a Narrow Domain Wall Width (좁은 자벽의 두께에 강자성층의 두께가 미치는 영향)

  • Lim, Ho-Tack;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.303-306
    • /
    • 2005
  • Effect of a ferromagnetic layer thickness on a narrow domain wall width is investigated. It is found that the narrow domain wall is formed in ferromagnetic/nonmagnetic/ferromagnetic multi layer structure with a loc at interlayer exchange coupling, and that the width of the narrow domain wall is affected by the ferromagnetic layer thickness. We performed micromagnetics simulations for the $Fe_1/Cr/Fe_2$ system with the local interlayer exchange coupling, with fixed thickness (20-nm) of $Fe_2$ layer and various $Fe_1$ layer thickness (1, 2, 4, and 6 nm). Consequently, we confirmed that the thinner the $Fe_1$ layer thickness, the thinner the width of the domain wall is formed, because of the surface energy nature of the interlayer exchange coupling.