DOI QR코드

DOI QR Code

Effect of a Ferromagnetic Layer Thickness on a Narrow Domain Wall Width

좁은 자벽의 두께에 강자성층의 두께가 미치는 영향

  • Published : 2005.12.01

Abstract

Effect of a ferromagnetic layer thickness on a narrow domain wall width is investigated. It is found that the narrow domain wall is formed in ferromagnetic/nonmagnetic/ferromagnetic multi layer structure with a loc at interlayer exchange coupling, and that the width of the narrow domain wall is affected by the ferromagnetic layer thickness. We performed micromagnetics simulations for the $Fe_1/Cr/Fe_2$ system with the local interlayer exchange coupling, with fixed thickness (20-nm) of $Fe_2$ layer and various $Fe_1$ layer thickness (1, 2, 4, and 6 nm). Consequently, we confirmed that the thinner the $Fe_1$ layer thickness, the thinner the width of the domain wall is formed, because of the surface energy nature of the interlayer exchange coupling.

Micromagnetics 전산 모사를 이용하여 국소적 층간교환상호작용이 있는 강자성/비자성/강자성 다층박막 구조에서 Bloch 자벽이나 Neel 자벽보다 더 얇은 두께의 자벽이 인위적으로 형성될 수 있음을 보였고, 이때 생성된 좁은 자벽의 두께가 강자성층의 두께에 의해 영향을 받음을 보였다. 국소적 층간교환상호작용을 가진 $Fe_1/Cr/Fe_2$ 구조에서 좁은 자벽이 생성됨을 보였고, $Fe_2$ 층의 두께를 20nm로 고정시키고 $Fe_1$층의 두께를 각각 1, 2, 4, 6nm으로 변화시켜가며 전산 모사를 수행하여 $Fe_1$ 층의 두께가 감소함에 따라 자벽의 두께가 얇아짐을 확인하였다.

Keywords

References

  1. N. Garcia, M. Munoz, and Y.-W. Zhao, Phys. Lett. 82, 2923(1999) https://doi.org/10.1103/PhysRevLett.82.2923
  2. G. Tatara, Y.- W. Zhao, M. Munoz, and N. Garcia, Phys. Rev. Lett. 83, 2030(1999) https://doi.org/10.1103/PhysRevLett.83.2030
  3. G. Tarara, Int. J. of Mod. Phys. 15, 321(2001) https://doi.org/10.1142/S0217979201002552
  4. J. Mathon, unpublished. (http://www.city.ac.uk/mathematics/NonoStructures/domain.html)
  5. J. B. A. N. van Hoof, K. M. Schep, A. Brataas, G E. W. Bauer, and P. J. Kelly, Phys. Rev. B 59, 138(1999) https://doi.org/10.1103/PhysRevB.59.138
  6. P. Bruno, Phys. Rev. Lett. 83, 2425(1999) https://doi.org/10.1103/PhysRevLett.83.2425
  7. C.-Y. You, J. Kor. Phys. Soc. 15, 1(2005)
  8. C.-Y. You, J. Kor. Mag. Soc. 47, 539(2005)
  9. C.-Y. You and S. D. Bader, J. Appl. Phys. 92, 3886(2002) https://doi.org/10.1063/1.1503861
  10. S. Chikazumi, 'Physics of Ferromagnetism' 2nd Ed. Clarendon PressOxford(1977)
  11. B. D. Cullity, 'Introduction to magnetic materials', Addison-Wesley Publishing Company(1972)
  12. M. J. Donahue and D. G. Porter, http://math/nist.gov/oommf
  13. P. Vavassori, M. Grimsditch, and Eric E. Fullerton, J. Magn. Magn. Mater. 223, 284(2001) https://doi.org/10.1016/S0304-8853(00)00536-9
  14. E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B 58, 12193(1998) https://doi.org/10.1103/PhysRevB.58.12193
  15. L. Zhou, Z. Zhang, P. E. Wigen, and K. Ounadjela, J. Appl. Phys. 76, 7078(1994) https://doi.org/10.1063/1.358033
  16. S. S. P. Parkin, U. S. Patent No. 984055(2005)