• Title/Summary/Keyword: Multi-phase converter

Search Result 136, Processing Time 0.038 seconds

Two Phase Interleaved LLC Resonant Converter (Two Phase Interleaved LLC 공진 컨버터)

  • Kim, Joo-Hoon;Lee, Kwang-Ho;Kim, Eun-Soo;Lee, Jae-Sam;Lee, Hyun-Kwan;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.397-405
    • /
    • 2009
  • Nowadays, power supplies for LCD TV of larger and slimmer screen size are required to have high power density and high efficient characteristics. In order to meet these requirements, Multi-phase interleaved LLC resonant converter is applied for increasing power density and reducing the current rating in the used devices. In this paper, gain characteristics and the experimental results of the proposed two-phase LLC resonant converter which implemented by the simple control circuit are verified based on the theoretical analysis and the 300W experimental prototype.

Harmonic Reduction of Three Phase Multi-Pulse Converter Circuit without Input Transformer (입력 변압기 없는 3상 멀티-펄스 콘버터의 고조파 저감)

  • Park, Hyun-Chul;Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.128-131
    • /
    • 2002
  • In this paper, a new method for reducing harmonic in input AC line currents of converter presents, which is the multi-pulse converter circuit without the input transformer. This system can reduce the harmonic like conventional 12-pulse converter. Both the bridge circuits are controlled with the shifted firing angle and connected 2 tap inter-phase reactor. Using 2 tap changing on inter-phase reactor, the input current is controlled with the different two values in order to make the input current waveform 12 pulses.

  • PDF

Implementation of Current Mode Control using Current Balance Controller of Multi-Phase Interleaved Boost Converter (다상 교호 승압컨버터의 전류평형제어기를 이용한 전류모드제어기 구현)

  • Park, Jong-Gyu;Choi, Hyun-Chil;Shin, Hwi-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.157-163
    • /
    • 2008
  • In the multi-phase interleaved converter with peak current mode control, current imbalance is measured when inductors of converter module are not exactly identical. In this paper current-sharing controller is proposed to balance phase current of converter modules. It also is designed to have good transient response. Proposed method implemented the 2-phase and 4-phase interleaved boost converter with imbalanced inductance. Experimental results verify the performance of Current share during the transient state of converter.

Modeling and Steady-state Analysis of the Multi-Phase Interleaved Buck converter in Discontinuous Inductor Current Mode (불연속 전류모드에서의 다상 교호 강압컨버터의 정상상태 해석 및 모델링)

  • Chang, Sung-Dong;Jang, Eun-Sung;Chung, Se-Kyo;Shin, Hwi-Boem;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.506-510
    • /
    • 2004
  • A multi-phase interleaved buck converter is used to reduce current ripples and filter size of a power supply. This paper addresses the modelling and steady-state analysis of the multi-phase interleaved buck converter operated in discontinuous inductor current mode. The model is derived using an averaging technique in steady state. The do voltage ratio and the range of the discontinuous inductor current mode(DICM) and the continuous output current mode(COCM) are derived from the averaged state-space model. In addition, the efficiency is investigated according to the number of phase.

  • PDF

Model-Based Predictive Control for Interleaved Multi-Phase DC/DC Converters (다상 인터리브드 DC/DC 컨버터를 위한 모델기반의 예측 제어기법)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.415-421
    • /
    • 2014
  • This study proposes a model-based predictive control for interleaved multi-phase DC/DC converters. The power values necessary to adjust the output voltage in the succeeding are predicted using a converter model. The output power is controlled by selecting the optimal duty cycle. The proposed method does not require controller loops and modulators for converter switching. This method can control the converter by calculating the optimal duty cycle, which minimizes the error between the reference and actual output voltage. The effectiveness of the proposed method is verified through simulations and experiments.

Bi-Directional Multi-Level Converter for an Energy Storage System

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.499-506
    • /
    • 2014
  • This paper proposes a 3 kW single-phase bi-directional multi-level converter for energy storage applications. The proposed topology is based on the H-bridge structure with four switches connected to the DC-link. A simple phase opposition disposition PWM method that requires only one carrier signal is also suggested. The switching sequence to balance the capacitor voltage is considered. The topology can be extended to a nine-level converter or a three-phase system. The operating principle of the proposed converter is verified through a simulation and an experiment.

Characteristic Analysis of Multi-Phase Interleaved Boost Converter in Discontinuous Inductor Current Mode (불연속 전류모드에서의 다상 교호 승압컨버터의 특성 해석)

  • Jang, Eun-Sung;Chung, Se-Kyo;Shin, Hwi-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.898-904
    • /
    • 2007
  • This paper presents the generalized and explicit expressions for evaluating the performance of the multi-phase interleaved boost converter (IBC) operating in discontinuous inductor current mode (DICM). The full order averaged model is derived. The generalized transfer functions of interest are presented and the dynamic characteristics are analyzed. The generalized analysis of converter performance is verified through the experimental and simulation results.

Passive Current Sharing Characteristics of Multi-Phase Synchronous Buck Converter (다상 동기 벅 컨버터의 Passive Current Sharing 특성)

  • Kim, Jeong-Hoon;Cho, Kyung-Sig;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.175-177
    • /
    • 2007
  • An analysis on a passive current sharing characteristics of a multi-phase synchronous buck converter is presented. The passive current sharing method is simple but its characteristics depend on the converter equivalent resistance and PWM uniformity. In this paper, the load sharing and power consumption of the passive current sharing system for the converter equivalent resistance and duty ratio inequalities are investigated through the simulation and experiment.

  • PDF

Analysis and Simulation of Multi-Level Converter by means of Multiple Single Phase Combination Control (단상 다중 조합제어 Multi-Level 컨버터의 해석과 시뮬레이션)

  • Ahn, I.M.;Chun, J.H.;Lee, Y.H.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.355-357
    • /
    • 1999
  • Single-Phase multi-level AC-DC converter that is composed of diode bridge and switch is proposed. The number of the supply current level is depending on the individual current level of the converter. A converter circuit, the number of the level is equal to $2^{M+1}-1$, where M is the number of Switching Converter. The proposed circuit has converter with 31 current levels. When the number of current level is increased, smoother sinusoidal waveform can be obtained directly and it is possible to control the supply current almost continuously from zero to maximum without generating high voltage step changes as pulse with modulation technology. The technique illustrates its validity and effectiveness through the PSIM.

  • PDF

An Optimized PI Controller Design for Three Phase PFC Converters Based on Multi-Objective Chaotic Particle Swarm Optimization

  • Guo, Xin;Ren, Hai-Peng;Liu, Ding
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.610-620
    • /
    • 2016
  • The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method.