• Title/Summary/Keyword: Multi-objective topology optimization

Search Result 48, Processing Time 0.036 seconds

Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective Coupling Algorithm

  • Li, Wuzhao;Wang, Yechuang;Sun, Youqiang;Mao, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1437-1459
    • /
    • 2020
  • Wireless Sensor Networks (WSN) is a distributed Sensor network whose terminals are sensors that can sense and check the environment. Sensors are typically battery-powered and deployed in where the batteries are difficult to replace. Therefore, maximize the consumption of node energy and extend the network's life cycle are the problems that must to face. Low-energy adaptive clustering hierarchy (LEACH) protocol is an adaptive clustering topology algorithm, which can make the nodes in the network consume energy in a relatively balanced way and prolong the network lifetime. In this paper, the novel multi-objective LEACH protocol is proposed, in order to solve the proposed protocol, we design a multi-objective coupling algorithm based on bat algorithm (BA), glowworm swarm optimization algorithm (GSO) and bacterial foraging optimization algorithm (BFO). The advantages of BA, GSO and BFO are inherited in the multi-objective coupling algorithm (MBGF), which is tested on ZDT and SCH benchmarks, the results are shown the MBGF is superior. Then the multi-objective coupling algorithm is applied in the multi-objective LEACH protocol, experimental results show that the multi-objective LEACH protocol can greatly reduce the energy consumption of the node and prolong the network life cycle.

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF

Multi-objective Topology Optimization of Single Phase Induction Motor Considering Electromangetics and Heat Transfer (전자기와 열전달을 고려한 단상유도모터의 다분야 위상최적설계)

  • Shim Hokyung;Moon Heegon;Wang Semyung;Kim Myungkyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.770-772
    • /
    • 2004
  • This paper presents a new approach regarding thermal characteristics associated with a design of the high efficiency motor. The adjoint variable design sensitivity equations for both electromagnetics with respect to permeability and heat transfer considering conduction and convection terms are derived using the continuum method. For multi-objective topology optimization, FEA is validated in terms of electromagnetics and heat transfer by experiments. The proposed method is applied to a single-phase induction motor of the scroll compressor in order to control the direction of heat flow by maximizing/minimizing the temperature of the target area while maintaining the efficiency.

  • PDF

3-D Topology Optimization of Magneto-Thermal Systems (자계-열계 시스템의 3차원 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.939-941
    • /
    • 2005
  • This research presents a 3D multi-objective approach regarding both magnetic and thermal characteristics associated with design of C-core actuator. The adjoint variable topology sensitivity equations are derived using the continuum method for three dimension. The sensitivity is verified using the Finite Difference Method(FDM). Convection interpolation function is proposed for density method of topologies such that convection term can be taken into consideration for practical design in the process of the optimization.

  • PDF

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Multi-component Topology Optimization Considering Joint Distance (조인트 최소거리를 고려한 다중구조물 위상최적설계 기법)

  • Jun Hwan, Kim;Gil Ho, Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.343-349
    • /
    • 2022
  • This paper proposes a new topology optimization scheme to determine optimized joints for multi-component models. The joints are modeled as zero-length high-stiffness spring elements. The spring joints are considered as mesh-independent springs based on a joint-element interpolation scheme. This enables the changing of the location of the joints regardless of the connected nodes during optimization. Because the joints are movable, the locations of the optimized joints should be aggregated at several points. In this paper, the novel joint dispersal (JD) constraint to prevent joint clustering is proposed. With the joint dispersal constraint, it is possible to determine the optimized joint location as well as optimized topologies while maintaining the minimum distance between each joint. The mechanical compliance value is considered as the objective function. Several topology optimization examples are solved to demonstrate the effect of the joint dispersal constraint.

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

Multi-objective optimal design of magneto-mechanical system using topology approach regarding magnetic reluctance force and magnetostriction (릴럭턴스 힘과 자기변형을 고려한 자계-기계계의 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.651-652
    • /
    • 2008
  • This research presents a multi-objective optimal design employing topological approach to maximize magnetic energy while minimizing structural deformation which is caused by magnetic reluctance force and magnetostriction. A design sensitivity formula is derived by employing the adjoint variable method (AVM) to avoid numerous sensitivity evaluations for a coupled magneto-mechanical analysis. The sensitivity analysis is verified using the finite difference method (FDM) in a C-shape actuator. A linear actuator used in a home appliance is examined for optimal design and demonstrates the strength of the proposed topology optimization approach.

  • PDF