• Title/Summary/Keyword: Multi-objective optimization algorithm

Search Result 444, Processing Time 0.022 seconds

A Multi-objective Optimization Approach to Workflow Scheduling in Clouds Considering Fault Recovery

  • Xu, Heyang;Yang, Bo;Qi, Weiwei;Ahene, Emmanuel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.976-995
    • /
    • 2016
  • Workflow scheduling is one of the challenging problems in cloud computing, especially when service reliability is considered. To improve cloud service reliability, fault tolerance techniques such as fault recovery can be employed. Practically, fault recovery has impact on the performance of workflow scheduling. Such impact deserves detailed research. Only few research works on workflow scheduling consider fault recovery and its impact. In this paper, we investigate the problem of workflow scheduling in clouds, considering the probability that cloud resources may fail during execution. We formulate this problem as a multi-objective optimization model. The first optimization objective is to minimize the overall completion time and the second one is to minimize the overall execution cost. Based on the proposed optimization model, we develop a heuristic-based algorithm called Min-min based time and cost tradeoff (MTCT). We perform extensive simulations with four different real world scientific workflows to verify the validity of the proposed model and evaluate the performance of our algorithm. The results show that, as expected, fault recovery has significant impact on the two performance criteria, and the proposed MTCT algorithm is useful for real life workflow scheduling when both of the two optimization objectives are considered.

유전자 알고리듬을 이용한 공작기계구조물의 정강성 해석 및 다목적 함수 최적화(II) (Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(II))

  • 이영우;성활경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.231-236
    • /
    • 2001
  • The goal of multiphase optimization of machine structure is to obtain 1) light weight, 2) statically and dynamically rigid structure. The entire optimization process is carried out in two phases. In the first phase, multiple optimization problem with two objective functions is treated using pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second phase, maximum receptance is minimized using genetic algorithm. The method is applied to design of quill type machine structure with back column.

  • PDF

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.

다목적 유전알고리즘을 이용한 익형의 전역최적설계 (Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm)

  • 이주희;이상환;박경우
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

Congestion Management in Deregulated Power System by Optimal Choice and Allocation of FACTS Controllers Using Multi-Objective Genetic Algorithm

  • Reddy, S. Surender;Kumari, M. Sailaja;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.467-475
    • /
    • 2009
  • Congestion management is one of the technical challenges in power system deregulation. This paper presents single objective and multi-objective optimization approaches for optimal choice, location and size of Static Var Compensators (SVC) and Thyristor Controlled Series Capacitors (TCSC) in deregulated power system to improve branch loading (minimize congestion), improve voltage stability and reduce line losses. Though FACTS controllers offer many advantages, their installation cost is very high. Hence Independent System Operator (ISO) has to locate them optimally to satisfy a desired objective. This paper presents optimal location of FACTS controllers considering branch loading (BL), voltage stability (VS) and loss minimization (LM) as objectives at once using GA. It is observed that the locations that are most favorable with respect to one objective are not suitable locations with respect to other two objectives. Later these competing objectives are optimized simultaneously considering two and three objectives at a time using multi-objective Strength Pareto Evolutionary Algorithms (SPEA). The developed algorithms are tested on IEEE 30 bus system. Various cases like i) uniform line loading ii) line outage iii) bilateral and multilateral transactions between source and sink nodes have been considered to create congestion in the system. The developed algorithms show effective locations for all the cases considered for both single and multiobjective optimization studies.

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider

  • He, Yanru;Song, Baowei;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.439-449
    • /
    • 2018
  • In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.491-496
    • /
    • 2002
  • 다목적 함수 최적화 문제(Multi-objective Optimization Problems : MOPs)는 공학적인 문제를 풀고자 할 때 자주 접하게 되는 대표적인 문제 중 하나이다. 공학자들이 다루는 실세계 최적화 문제들은 몇 개의 경합하는 목적 함수(objective function) 들로 이루어진 문제일 경우가 많다. 본 논문에서는 다목적 함수 최적화 문제의 정의를 소개하고 이 문제를 풀기 위한 몇 가지 접근법을 소개한다. 먼저 서론에서는 파레토 최적해(Pareto optimal solution) 의 개념을 이용한 기존의 최적화 알고리즘과 이와는 달리 게임 이론(Game Theory) 으로부터 도출된 최적화 알고리즘인 내쉬 유전자 알고리즘(Nash Genetic Algorithm Nash GA) 그리고 본 논문에서 제안하는 공진화 알고리즘의 기반이 되는 진화적 안정 전략 (Evolutionary Stable Strategy : ESS) 의 이론적 배경을 소개한다. 또 본론에서는 다목적 함수 최적화 문제와 파레토 최적 해의 정의를 소개하고 다목적 함수 최적화 문제를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론(Evolutionary Game Theory : EGT) 에 적용시킨 내쉬 유전자 알고리즘과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 가지 알고리즘을 대표적인 다목적 함수 최적화 문제에 적용하고 결과를 비교 검토함으로써 진화적 게임 이론의 두 가지 아이디어 내쉬의 균형(Equilibrium) 과 진화적 안정전략 에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해 를 탐색할 수 있음을 확인한다.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화 (Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis)

  • 렌지얀;장전해;박찬혁;고창섭
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.