• Title/Summary/Keyword: Multi-materials

Search Result 2,944, Processing Time 0.026 seconds

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria;Victoria, Maximo;Hoffelner, Wolfgang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

Prediction of VOCs Emissions from Multi-layers Materials (복합자재에서의 VOCs 방출량 예측에 관한 연구)

  • Yoon, Chang-Hyun;Kwon, Kyung-Woo;Park, Jun-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.9-14
    • /
    • 2005
  • The purpose of this study is to predict VOCs emission rates from multi-layers materials, which are composed of single-layer materials having various VOCs emission rates, by using effective diffusion coefficients of the single-layer materials. The study was consisted of two parts; the one is the prediction of VOCs emission rates from multi-layer materials through numerical methods. The other is the measurement of VOCs emissions rates of wall composite and floor composite in Mock-up rooms for comparing the prediction and the experiments' values. The results of the study show that the short-term VOCs emission rates of multi-layers materials can be predicted from the effective diffusion coefficients of single materials in odor accuracy.

  • PDF

Trends of Advanced Multi-Material Technology for Light Materials based on Aluminum (알루미늄 기반 Advanced Multi-Material 기술의 선진 동향)

  • Lee, Mokyoung;Jung, Sung-Hun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.19-25
    • /
    • 2016
  • Global warming is hot issue to keep the earth everlastingly. Despite the increase of the world population and the energy demand, the world oil supply and the oil price are hold the steady state. If we are not decrease the world population and the energy consumption, unforeseeable energy crisis will come in the immediate future. AMT acronym of Advanced Materials for Transportation is a non-profitable IEA-affiliated organization to mitigate the oil consumption and the environment contamination for the transportation. In recent, Annex X Multi-materials Joining was added to enhance the car body weight reduction cause the high fuel efficiency and the low emission of exhaust gas. Multi-materials are the advanced materials application technology to optimize the weight, the performance and the cost with the combination of different materials such as Al-alloy, Mg- alloy, AHSS and CFRP. In this study, the trends of AMT strategy and Al-alloy based multi-materials joining technology were review. Also several technologies for Al-alloy dissimilar joining were investigated.

A general tangent operator applied to concrete using a multi-surface plasticity model

  • Silva, Ana Beatriz C.G.;Telles, Jose Claudio F.;Fairbairn, Eduardo M.R.;Ribeiro, Fernando Luiz B.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.329-342
    • /
    • 2015
  • The present paper aims at developing a method to accommodate multi-surface concrete plasticity from the point of view of a consistency concept applied to general tangent operators. The idea is based on a Taylor series expansion of the actual effective stress at the stress point corresponding to the previous accumulated true stresses plus the current increment values, initially taken to be elastic. The proposed algorithm can be generalized for any multi-surface criteria combination and has been tested here for typical cement-based materials. A few examples of application are presented to demonstrate the effectiveness of the multi-surface technique as used to a combination of Rankine and Drucker-Prager yield criteria.

Dynamic Characteristics of Multi-Channel Metal-Induced Unilaterally Precrystallized Polycrystalline Silicon Thin-Film Transistor Devices and Circuits (금속 유도 일측면 선결정화에 의해 제작된 다채널 다결정 실리콘 박막 트랜지스터 소자 및 회로의 전기적 특성 평가)

  • Hwang, Wook-Jung;Kang, Il-Suk;Lim, Sung-Kyu;Kim, Byeong-Il;Yang, Jun-Mo;Ahn, Chi-Won;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.507-510
    • /
    • 2008
  • Electrical properties of multi-channel metal-induced unilaterally precrystallized polycrystalline silicon thin-film transistor (MIUP poly-Si TFT) devices and circuits were investigated. Although their structure was integrated into small area, reducing annealing process time for fuller crystallization than that of conventional crystal filtered MIUP poly-Si TFTs, the multi-channel MIUP poly-Si TFTs showed the effect of crystal filtering. The multi-channel MIUP poly-Si TFTs showed a higher carrier mobility of more than 1.5 times that of the conventional MIUP poly-Si TFTs. Moreover, PMOS inverters consisting of the multi-channel MIUP poly-Si TFTs showed high dynamic performance compared with inverters consisting of the conventional MIUP poly-Si TFTs.

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

A Study on the Frosting Phenomena of Abrasive Waterjet Microcutting for Multi-Layered Materials (연마제 워터젯을 이용한 복합재 미세가공의 백화현상에 대한 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyoung;Go, Jeung-Sang;Shin, Bo-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.183-190
    • /
    • 2007
  • It is well known that abrasive waterjet(AWJ) was developed as a kind of high-density energy processing technologies. AWJ is used to obtain the better cutting quality of various materials such as metals, ceramics, glass and composite materials within a short manufacturing time because of the characteristics of heatless and noncontact processing. However, AWJ device still has some problems to obtain the high quality of thin workpiece. In this paper, we investigated the optimal microcutting conditions of AWJ, such as maximum pressure, cutting speed and standoff distance of thin multi-layered materials. The experimental results show that AWJ has possibilities and potential to apply to the microcutting of thin multi-layered materials for IT industrial applications.

Development of the Lightweight Multi-layered Board with High Stiffness for Automotive Interior Trims (자동차 내장트림용 고강성 경량 다층보드 개발)

  • Lee, Kyu-Se;Lee, Kyung-Sick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Lightweight multi-layered boards with high stiffness for the automotive interior trims were developed, which were composed of a single material. The boards were constructed in the form of substrate/core/substrate with newly developed materials. The materials which have high tensile strength and elongation were selected for the substrate materials, and those which have high compressive strength and low density were selected for the core materials. 25 types of multi-layered boards were fabricated using the selected substrate and core materials. The compatibility with the skin materials, the formability and the tensile strength and flexural strength of the specimens were evaluated. The results show that three types of multi-layered boards(Kenboard/EPP foam/Kenboard, Twintex/PP honeycomb/Twintex, Curv sheet/EPP foam/Curv sheet) are appropriate for the automotive interior trims. Considering the ease of materials supply and the economical aspect, Kenboard/EPP foam/Kenboard is thought to be the most realistic alternative.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.