• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.028 seconds

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE) (P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작)

  • Cho, Seongwoo;Glasser, Melodie;Kim, Jaegyu;Ryu, Jeongjae;Kim, Yunjeong;Kim, Hyejin;Park, Kang-Ho;Hong, Seungbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.157-160
    • /
    • 2019
  • P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao;Man Wang;Rui Yang;Meng Zhao;Zenghao Song;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Characteristics of the Load of Small Hard Body Used for Impact Resistance Test of the Lightweight Wall (경량벽체의 내충격성 시험에 사용되는 경질 충격체의 하중 특성)

  • Choi, Soo-Kyung;Song, Jung-Hyeon;Kim, Sang-Heon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.350-358
    • /
    • 2014
  • The demand for the lightweight wall has increased as the structure of the multi-unit dwelling has shift to the rahmen structure. The lightweight wall is required to secure certain degree of shock resistance for the structural safety. The study performed the load analysis test for 7 small hard bodies with different masses and shapes and 5 hard materials which applied the impact load on the wall. It was found out from the experiment that different pendulum weight doubled the load maximum even though the shock energy was the same. In addition, the study compared and analyzed the weight of materials and the load of small hard bodies to propose fundamental data for the material design of the lightweight wall.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Identification of Substructure Model using Measured Response Data (계측 거동 데이터를 이용한 부분구조 모델의 식별)

  • Oh, Seong-Ho;Lee, Sang-Min;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • The paper provides a methodology of identifying a substructure model when sectional and material properties of the structure are not the a priori information. In defining a substructure model, it is required that structural responses be consistent with the actual behavior of the part of the structure. Substructure model is identified by estimating boundary spring constants and stiffness properties of the substructure. Static and modal system identification methods have been applied using responses measured at limited locations within the substructure. Simulation studies for static and dynamic responses have been carried. The results and associated problems are discussed in the paper. The procedure has been also applied to an actual multi-span plate-girder Gerber-type bridge with dynamic responses obtained from a moving truck test and construction blasting vibrations.

Development of Ceramic Filter Using Non Radiative Microstrip Line In Millimeter-Wave (비방사 마이크로 스트립 선로를 이용한 밀리미터 대역의 세라믹 필터 개발)

  • Shin, Cheon-Woo;Kim, Tae-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.648-656
    • /
    • 2007
  • This paper is about band pass filter, using Ceramics in the condition of center frequency 370Hz at milli-wave. The band pass filter is applied to Broadband Convergence Network, representing WLL(Wireless Local Loop) and LMDS(Local Multi-point Distribution Service). Sticking ceramic between strip line on a dielectric material substrate with which conductor's covers upper and basal surface, One will house the exterior by using structural resonance. In this Non Radiative Microstrip Line Filter structure, based upon simulations, generalized the two formulas finding resonant frequency of 1step ceramic resonator and bandwidth of 4step ceramic resonator. Also, As a result of experiment, using Network Analyzer, about created a experiment of structure based on the simulation result of 4-step ceramic resonator, It showed good characteristic of targeted bandwidth, comparing simulated result of 36.58GHz$\sim$37.650GHz with experimented result of 36.6GHz$\sim$37.65GHz.

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures (복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.139-145
    • /
    • 2019
  • This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.