Browse > Article
http://dx.doi.org/10.5805/SFTI.2022.24.6.667

4D Printing Materials for Soft Robots  

Sunhee Lee (Dept. Fashion Design, Dong-A University)
Publication Information
Fashion & Textile Research Journal / v.24, no.6, 2022 , pp. 667-685 More about this Journal
Abstract
This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.
Keywords
4D printing; shape-shifting behavior; various dimensional shape-shifting; hinge auxetic structure; phneumatic auxetic structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. (2022). A review of 3D printing soft materials - 2022 additive manufacturing of soft materials conference. Fiber Technology & Industry, 26(3), 112-122.
2 Li, H., Gao, X., & Luo, Y. (2016). Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks, Soft Matter 12, 3226-3233. doi:10.1039/C6SM00185H   DOI
3 Liu, Y., Genzer, J., & Dickey, M. D. (2016). "2D or not 2D" - Shapeprogramming polymer sheets. Progress in Polymer Science, 52, 79-106. doi:10.1016/j.progpolymsci.2015.09.001   DOI
4 Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Jerry Qi, H. (2015). Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 1-12. doi:10.1038/srep13616   DOI
5 Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42-79. doi:10.1016/j.matdes.2017.02.068   DOI
6 Mutlu, R., Alici, G., in het Panhuis, M., Spinks, G. (2015). Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger, 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)IEEE, pp. 790-795. doi:10.1109/AIM.2015.7222634   DOI
7 Ou, J., Ma, Z., Peters, J., Dai, S., Vlavianos, N., & Ishii, H. (2018). KinetiX-designing auxetic-inspired deformable material structures. Computers & Graphics, 75, 72-81. doi:10.1016/j.cag.2018.06.003   DOI
8 Papadopoulou, A., Laucks, J., & Tibbits, S. (2017). Auxetic materials in design and architecture. Nature Reviews Materials, 2(12), 1-3. doi:10.1038/natrevmats.2017.78   DOI
9 Peraza-Hernandez, E. A., Hartl, D. J., Malak Jr, R. J., & Lago udas, D. C. (2014). Origami-inspired active structures - A synthesis and review. Smart Materials and Structures, 23(9), 094001. doi:10.1088/0964-1726/23/9/094001   DOI
10 Pinskier, J., & Howard, D. (2022). From bioinspiration to computer generation - Developments in autonomous soft robot design. Advanced Intelligent Systems, 4(1), 2100086. doi:10.1002/aisy.202100086   DOI
11 Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., ... & Tibbits, S. (2014). Active printed materials for complex self-evolving deformations. Scientific Reports, 4(1), 1-8. doi:10.1038/srep07422   DOI
12 Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures - A review. Smart materials and structures, 27(2), 023001. doi:10.1088/1361-665X/aaa61c   DOI
13 Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing - Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162. doi:10.1016/j.cej.2020.126162   DOI
14 Ryu, J., D'Amato, M., Cui, X., Long, K. N., Jerry Qi, H., & Dunn, M. L. (2012). Photo-origami-Bending and folding polymers with light. Applied Physics Letters, 100(16), 161908. doi:10.1063/1.3700719   DOI
15 Sun, L., & Huang, W. M. (2010). Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6, 4403-4406. doi:10.1039/C0SM00236D   DOI
16 Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413-418. doi:10.1038/nmat4544   DOI
17 Therien-Aubin, H., Wu, Z. L., Nie, Z., & Kumacheva, E. (2013). Multiple shape transformations of composite hydrogel sheets. Journal of the American Chemical Society, 135(12), 4834-4839. doi:10.1021/ja400518c   DOI
18 Tibbits, S. (2014). 4D printing - Multi-material shape change. Architectural Design, 84(1), 116-121. doi:10.1002/ad.1710   DOI
19 Villar, G., Graham, A.D., & Bayley, H. (2013). A tissue-like printed material. Science, 340, 48-52. doi:10.1126/science.1229495   DOI
20 Tibbits, S., Mcknelly, C., Olguin, C., Dikovsky, D., & Hirsch, S. (2014). 4D Printing and universal transformation. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA).
21 Wagner, M., Chen, T., & Shea, K. (2017). Large shape transforming 4D auxetic structures. 3D printing and Additive Manufacturing, 4(3), 133-142. doi:10.1089/3dp.2017.0027   DOI
22 Wang, J., & Chortos, A. (2022). Control strategies for soft robot systems. Advanced Intelligent Systems, 4(5), 2100165. doi:10.1002/aisy.202100165   DOI
23 Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301. doi:10.1103/PhysRevLett.113.014301   DOI
24 Wang, Q., & Zhao, X. (2014). Phase diagrams of instabilities in compressed film-substrate systems. Journal of Applied Mechanics, 81(5). 051004. doi:10.1115/1.4025828   DOI
25 Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., ... & Qi, H. J. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6(1), 1-11. doi:10.1038/srep24224   DOI
26 Xie, T. (2010). Tunable polymer multi-shape memory effect. Nature, 464, 267-270. doi:10.1038/nature08863   DOI
27 Xing, L., Wang, M., Zhang, J., Chen, X., & Ye, X. (2020). A survey on flexible exoskeleton robot. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 170-174. doi:10.1109/ITNEC48623.2020.9084920   DOI
28 Zhang, Q., Zhang, K., & Hu, G. (2016). Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6(1), 1-8. doi:10.1038/srep22431   DOI
29 Yu, K., Dunn, M. L., & Qi, H. J. (2015). Digital manufacture of shape changing components. Extreme Mechanics Letters, 4, 9-17. doi:10.1016/j.eml.2015.07.005   DOI
30 Yu, K., Xie, T., Leng, J., Ding, Y., Qi, & H. J. (2012). Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8, 5687-5695. doi:10.1039/C2SM25292A   DOI
31 Zhou, J., & Sheiko, S. S. (2016). Reversible shape-shifting in polymeric materials. Journal of Polymer Science Part B - Polymer Physics, 54(14), 1365-1380. doi:10.1002/polb.24014   DOI
32 Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., Fu, J., & Cui, H. (2015). From 3D to 4D printing - Approaches and typical applications. Journal of Mechanical Science and Technology, 29(10), 4281-4288. doi:10.1007/s12206-015-0925-0   DOI
33 Choi, J. B., & Lakes, R. S. (1992). Non-linear properties of metallic cellular materials with a negative Poisson's ratio. Journal of Materials Science, 27(19), 5375-5381. doi:10.1007/BF02403846   DOI
34 Bakarich, S. E., Gorkin III, R., Panhuis, M. I. H., & Spinks, G. M. (2015). 4D printing with mechanically robust, thermally actuating hydrogels. Macromolecular Rapid Communications, 36(12), 1211-1217. doi:10.1002/marc.201500079   DOI
35 Bertoldi, K., Vitelli, V., Christensen, J., & Van Hecke, M. (2017). Flexible mechanical metamaterials. Nature Reviews Materials, 2(11), 1-11. doi:10.1038/natrevmats.2017.66   DOI
36 Chen, C. P., & Lakes, R. S. (1996). Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams. 118(3), 285-288 doi:10.1115/1.2806807   DOI
37 Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by fourdimension printing. Applied Physics Letters, 103(13), 131901. doi:10.1063/1.4819837   DOI
38 Choi, J. B., & Lakes, R. S. (1996). Fracture toughness of re-entrant foam materials with a negative Poisson's ratio - Experiment and analysis. International Journal of Fracture, 80(1), 73-83. doi:10.1007/BF00036481   DOI
39 Dorsey, K. L., Roberts, S. F., Forman, J., & Ishii, H. (2022). Analysis of DefeXtiles - A 3D printed textile towards garments and accessories. Journal of Micromechanics and Microengineering, 32(3), 034005. doi:10.1088/1361-6439/ac4fad   DOI
40 Eguchi, S., Okabe, C., Ohira, M., & Tanaka, H. (2022, April). Pneumatic Auxetics - Inverse design and 3D printing of auxetic pattern for pneumatic morphing. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp. 1-7. doi:0.1145/3491101.3519801
41 Ge, Q., Dunn, C. K., Qi, H. J., & Dunn, M. L. (2014). Active origami by 4D printing. Smart Materials and Structures, 23(9), 094007. doi:10.1088/0964-1726/23/9/094007   DOI
42 Hager, M. D., Bode, S., Weber, C., & Schubert, U. S. (2015). Shape memory polymers - Past, present and future developments. Progress in Polymer Science, 49, 3-33. doi:10.1016/j.progpolymsci.2015.04.002   DOI
43 Hao, Y., Zhang, S., Fang, B., Sun, F., Liu, H., & Li, H. (2022). A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chinese Journal of Mechanical Engineering, 35(1), 1-16. doi:10.1186/s10033-022-00707-2   DOI
44 Jamal, M., Kadam, S. S., Xiao, R., Jivan, F., Onn, T. M., Fernandes, R., ... & Gracias, D. H. (2013). Bio?origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, 2(8), 1142-1150. doi:10.1002/adhm.201200458   DOI
45 Kolken, H. M., & Zadpoor, A. A. (2017). Auxetic mechanical metamaterials. RSC advances, 7(9), 5111-5129. doi:10.1039/C6RA27333E   DOI
46 Kim, H. S., Koo, D. S., Nam, Y. J., Cho, K. J., & Kim, S. (2019). Research on technology status and development direction of wearable robot. Fashion & Textile Research Journal, 21(5), 640-655. doi:10.5805/SFTI.2019.21.5.640   DOI
47 Kim, H., Ahn, S. K., Mackie, D. M., Kwon, J., Kim, S. H., Choi, C., ... & Ko, S. H. (2020). Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 41, 243-269. doi:10.1016/j.mattod.2020.06.005   DOI
48 Kokkinis, D., Schaffner, M., & Studart, A. R. (2015). Multimaterial magnetically assisted 3D printing of composite materials. Nature communications, 6(1), 1-10. doi:10.1038/ncomms9643   DOI
49 Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., ... & Qi, H. J. (2019). Advances in 4D printing - Materials and applications. Advanced Functional Materials, 29(2), 1805290. doi:10.1002/adfm.201805290   DOI
50 Kuksenok, O., & Balazs, A. C. (2016). Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 3(1), 53-62. doi:10.1039/C5MH00212E   DOI
51 Lakes, R. S., & Elms, K. (1993). Indentability of conventional and negative Poisson's ratio foams. Journal of Composite Materials, 27(12), 1193-1202. doi:10.1177/002199839302701203   DOI
52 Lauff, C. Simpson, T.W. Frecker, M. Ounaies, Z. Ahmed, S. von Lockette, P. Strzelec, R. Sheridan, R., & Lien, J. M. (2014). Differentiating bending from folding in origami engineering using active materials. ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. V05BT08A040-V005BT008A040. doi:10.1115/DETC2014-34702   DOI